|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM30581107X |
003 |
DE-627 |
005 |
20231225122003.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201907495
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1019.xml
|
035 |
|
|
|a (DE-627)NLM30581107X
|
035 |
|
|
|a (NLM)31984556
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Zihang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.12.2020
|
500 |
|
|
|a Date Revised 15.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Due to the intrinsic properties of fabrics, fabric-based wearable systems have certain advantages over elastomeric material-based stretchable electronics. Here, a method to produce highly stretchable, conductive, washable, and solderable fibers that consist of elastic polyurethane (PU) fibers and conductive Cu fibers, which are used as interconnects for wearable electronics, is reported. The 3D helical shape results from stress relaxation of the prestretched PU fiber and the plasticity of the Cu fiber, which provides a predictable way to manipulate the morphology of the 3D fibers. The present fibers have superior mechanical and electrical properties to many other conductive fibers fabricated through different approaches. The 3D helical fibers can be readily integrated with fabrics and other functional components to build fabric-based wearable systems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D helical shape
|
650 |
|
4 |
|a conductive fibers
|
650 |
|
4 |
|a stretchable and
|
650 |
|
4 |
|a washable electronics
|
650 |
|
4 |
|a wearable electronics
|
650 |
|
7 |
|a Polyurethanes
|2 NLM
|
650 |
|
7 |
|a Copper
|2 NLM
|
650 |
|
7 |
|a 789U1901C5
|2 NLM
|
700 |
1 |
|
|a Zhai, Zirui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Zeming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Yingzhu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Jiahao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shan, Yingfa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Jinren
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Haichao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Hanqing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 10 vom: 30. März, Seite e1907495
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:10
|g day:30
|g month:03
|g pages:e1907495
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201907495
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 10
|b 30
|c 03
|h e1907495
|