Unsupervised Deep Image Fusion with Structure Tensor Representations

Convolutional neural networks (CNNs) have facilitated substantial progress on various problems in computer vision and image processing. However, applying them to image fusion has remained challenging due to the lack of the labelled data for supervised learning. This paper introduces a deep image fus...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 17. Jan.
1. Verfasser: Jung, Hyungjoo (VerfasserIn)
Weitere Verfasser: Kim, Youngjung, Jang, Hyunsung, Ha, Namkoo, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM305736582
003 DE-627
005 20250226151249.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2966075  |2 doi 
028 5 2 |a pubmed25n1018.xml 
035 |a (DE-627)NLM305736582 
035 |a (NLM)31976896 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jung, Hyungjoo  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Deep Image Fusion with Structure Tensor Representations 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Convolutional neural networks (CNNs) have facilitated substantial progress on various problems in computer vision and image processing. However, applying them to image fusion has remained challenging due to the lack of the labelled data for supervised learning. This paper introduces a deep image fusion network (DIF-Net), an unsupervised deep learning framework for image fusion. The DIF-Net parameterizes the entire processes of image fusion, comprising of feature extraction, feature fusion, and image reconstruction, using a CNN. The purpose of DIF-Net is to generate an output image which has an identical contrast to high-dimensional input images. To realize this, we propose an unsupervised loss function using the structure tensor representation of the multi-channel image contrasts. Different from traditional fusion methods that involve time-consuming optimization or iterative procedures to obtain the results, our loss function is minimized by a stochastic deep learning solver with large-scale examples. Consequently, the proposed method can produce fused images that preserve source image details through a single forward network trained without reference ground-truth labels. The proposed method has broad applicability to various image fusion problems, including multi-spectral, multi-focus, and multi-exposure image fusions. Quantitative and qualitative evaluations show that the proposed technique outperforms existing state-of-the-art approaches for various applications 
650 4 |a Journal Article 
700 1 |a Kim, Youngjung  |e verfasserin  |4 aut 
700 1 |a Jang, Hyunsung  |e verfasserin  |4 aut 
700 1 |a Ha, Namkoo  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 17. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2020  |g day:17  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2966075  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 17  |c 01