Satisfied-User-Ratio Modeling for Compressed Video

With explosive increase of internet video services, perceptual modeling for video quality has attracted more attentions to provide high quality-of-experience (QoE) for end-users subject to bandwidth constraints, especially for compressed video quality. In this paper, a novel perceptual model for sat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 17. Jan.
1. Verfasser: Zhang, Xinfeng (VerfasserIn)
Weitere Verfasser: Yang, Chao, Wang, Haiqiang, Xu, Wei, Kuo, C-C Jay
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM305736574
003 DE-627
005 20240229162505.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2965994  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM305736574 
035 |a (NLM)31976895 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xinfeng  |e verfasserin  |4 aut 
245 1 0 |a Satisfied-User-Ratio Modeling for Compressed Video 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a With explosive increase of internet video services, perceptual modeling for video quality has attracted more attentions to provide high quality-of-experience (QoE) for end-users subject to bandwidth constraints, especially for compressed video quality. In this paper, a novel perceptual model for satisfied-user-ratio (SUR) on compressed video quality is proposed by exploiting compressed video bitrate changes and spatial-temporal statistical characteristics extracted from both uncompressed original video and reference video. In the proposed method, an efficient video feature set is explored and established to model SUR curves against bitrate variations by leveraging the Gaussian Processes Regression (GPR) framework. In particular, the proposed model is based on the recently released large-scale video quality dataset, VideoSet, and takes both spatial and temporal masking effects into consideration. To make it more practical, we further optimize the proposed method from three aspects including feature source simplification, computation complexity reduction and video codec adaption. Based on experimental results on VideoSet, the proposed method can accurately model SUR curves for various video contents and predict their required bitrates at given SUR values. Subjective experiments are conducted to further verify the generalization ability of the proposed SUR model 
650 4 |a Journal Article 
700 1 |a Yang, Chao  |e verfasserin  |4 aut 
700 1 |a Wang, Haiqiang  |e verfasserin  |4 aut 
700 1 |a Xu, Wei  |e verfasserin  |4 aut 
700 1 |a Kuo, C-C Jay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 17. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:17  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2965994  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 17  |c 01