Efficient and Fast Real-World Noisy Image Denoising by Combining Pyramid Neural Network and Two-Pathway Unscented Kalman Filter

Recently, image prior learning has emerged as an effective tool for image denoising, which exploits prior knowledge to obtain sparse coding models and utilize them to reconstruct the clean image from the noisy one. Albeit promising, these prior-learning based methods suffer from some limitations suc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 20. Jan.
1. Verfasser: Ma, Ruijun (VerfasserIn)
Weitere Verfasser: Hu, Haifeng, Xing, Songlong, Li, Zhengming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM305736558
003 DE-627
005 20240229162505.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2965294  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM305736558 
035 |a (NLM)31976893 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Ruijun  |e verfasserin  |4 aut 
245 1 0 |a Efficient and Fast Real-World Noisy Image Denoising by Combining Pyramid Neural Network and Two-Pathway Unscented Kalman Filter 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Recently, image prior learning has emerged as an effective tool for image denoising, which exploits prior knowledge to obtain sparse coding models and utilize them to reconstruct the clean image from the noisy one. Albeit promising, these prior-learning based methods suffer from some limitations such as lack of adaptivity and failed attempts to improve performance and efficiency simultaneously. With the purpose of addressing these problems, in this paper, we propose a Pyramid Guided Filter Network (PGF-Net) integrated with pyramid-based neural network and Two-Pathway Unscented Kalman Filter (TP-UKF). The combination of pyramid network and TP-UKF is based on the consideration that the former enables our model to better exploit hierarchical and multi-scale features, while the latter can guide the network to produce an improved (a posteriori) estimation of the denoising results with fine-scale image details. Through synthesizing the respective advantages of pyramid network and TP-UKF, our proposed architecture, in stark contrast to prior learning methods, is able to decompose the image denoising task into a series of more manageable stages and adaptively eliminate the noise on real images in an efficient manner. We conduct extensive experiments and show that our PGF-Net achieves notable improvement on visual perceptual quality and higher computational efficiency compared to state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Hu, Haifeng  |e verfasserin  |4 aut 
700 1 |a Xing, Songlong  |e verfasserin  |4 aut 
700 1 |a Li, Zhengming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 20. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:20  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2965294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 20  |c 01