An Interpretable Deep Architecture for Similarity Learning Built Upon Hierarchical Concepts

In general, development of adequately complex mathematical models, such as deep neural networks, can be an effective way to improve the accuracy of learning models. However, this is achieved at the cost of reduced post-hoc model interpretability, because what is learned by the model can become less...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 20. Jan.
1. Verfasser: Gao, Xinjian (VerfasserIn)
Weitere Verfasser: Mu, Tingting, Goulermas, John Y, Thiyagalingam, Jeyarajan, Wang, Meng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM30573654X
003 DE-627
005 20240229162505.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2965275  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM30573654X 
035 |a (NLM)31976892 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Xinjian  |e verfasserin  |4 aut 
245 1 3 |a An Interpretable Deep Architecture for Similarity Learning Built Upon Hierarchical Concepts 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In general, development of adequately complex mathematical models, such as deep neural networks, can be an effective way to improve the accuracy of learning models. However, this is achieved at the cost of reduced post-hoc model interpretability, because what is learned by the model can become less intelligible and tractable to humans as the model complexity increases. In this paper, we target a similarity learning task in the context of image retrieval, with a focus on the model interpretability issue. An effective similarity neural network (SNN) is proposed to offer not only to seek robust retrieval performance but also to achieve satisfactory post-hoc interpretability. The network is designed by linking the neuron architecture with the organization of a concept tree and by formulating neuron operations to pass similarity information between concepts. Various ways of understanding and visualizing what is learned by the SNN neurons are proposed. We also exhaustively evaluate the proposed approach using a number of relevant datasets against a number of state-of-the-art approaches to demonstrate the effectiveness of the proposed network. Our results show that the proposed approach can offer superior performance when compared against state-of-the-art approaches. Neuron visualization results are demonstrated to support the understanding of the trained neurons 
650 4 |a Journal Article 
700 1 |a Mu, Tingting  |e verfasserin  |4 aut 
700 1 |a Goulermas, John Y  |e verfasserin  |4 aut 
700 1 |a Thiyagalingam, Jeyarajan  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 20. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:20  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2965275  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 20  |c 01