Moses Effect : Splitting a Sessile Droplet Using a Vapor-Mediated Marangoni Effect Leading to Designer Surface Patterns

In this work, we showcase a mechanism of rapid and focused solvent depletion using vapor-mediated interaction that can nonintrusively cleave a sessile water droplet reminiscent of Moses parting the Red Sea. The Marangoni effect is induced by the differential adsorption of vapor from a nearby pendant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 5 vom: 11. Feb., Seite 1279-1287
1. Verfasser: Kabi, Prasenjit (VerfasserIn)
Weitere Verfasser: Pal, Ritam, Basu, Saptarshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM30569264X
003 DE-627
005 20231225121730.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b03690  |2 doi 
028 5 2 |a pubmed24n1018.xml 
035 |a (DE-627)NLM30569264X 
035 |a (NLM)31972089 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kabi, Prasenjit  |e verfasserin  |4 aut 
245 1 0 |a Moses Effect  |b Splitting a Sessile Droplet Using a Vapor-Mediated Marangoni Effect Leading to Designer Surface Patterns 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.02.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we showcase a mechanism of rapid and focused solvent depletion using vapor-mediated interaction that can nonintrusively cleave a sessile water droplet reminiscent of Moses parting the Red Sea. The Marangoni effect is induced by the differential adsorption of vapor from a nearby pendant droplet of ethanol, leading to an exponential increase in surface velocity inside the water droplet. The Marangoni convection leads to the drainage of liquid from the central section of the water droplet and consequently splits it. By encoding the position of the ethanol (vertical as well as horizontal) droplet, an array of liquid motion is observed (split, shift, and slosh) in the water droplet. This method is further extended to nanocolloidal systems, where the liquid motion can be exploited to generate a wide gamut of deposit patterns ranging from uniform precipitate to sporadic islands without resorting to the more traditional evaporation-driven capillary flows ("coffee stains") or custom engineering of the shape of the nanoparticles. We further provide a detailed exposition of the physical mechanisms responsible for the splitting of the liquid drop and consequent particle deposition. The concept can be extended to liquid actuation in open channel microfluidic chips and surface patterning as in medical diagnostics, optoelectronics, and thermal management 
650 4 |a Journal Article 
700 1 |a Pal, Ritam  |e verfasserin  |4 aut 
700 1 |a Basu, Saptarshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 5 vom: 11. Feb., Seite 1279-1287  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:5  |g day:11  |g month:02  |g pages:1279-1287 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b03690  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 5  |b 11  |c 02  |h 1279-1287