Hierarchical Micro-Nanostructured Surfaces for Isotropic/Anisotropic Liquid Transport
The control of liquid transport using hierarchical micro-nanostructured surfaces is of significant interest for a broad range of applications, including thermal management, digital lab-on-chip, self-cleaning surfaces, antifogging, and water harvesting, among others. Although a variety of fabrication...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 6 vom: 18. Feb., Seite 1569-1573 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The control of liquid transport using hierarchical micro-nanostructured surfaces is of significant interest for a broad range of applications, including thermal management, digital lab-on-chip, self-cleaning surfaces, antifogging, and water harvesting, among others. Although a variety of fabrication techniques can be utilized to produce micro/nanostructured patterns for controlling liquid transport, each sample usually needs to be patterned and developed separately, making the micro/nanofabrication process tedious and expensive. Here, based on scalable template stripping and chemical oxidation techniques, we demonstrate hierarchical micro-nanostructured surfaces for isotropic or anisotropic liquid transport. Furthermore, the overall structure is thin and flexible, making it ideal for applications where geometry and weight are constrained, such as aerospace, flexible, and wearable devices |
---|---|
Beschreibung: | Date Revised 19.02.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.9b03800 |