Mechanism and Kinetics of Lipid Bilayer Formation in Solid-State Nanopores

Solid-state nanopores provide a highly versatile platform for rapid electrical detection and analysis of single molecules. Lipid bilayer coating of the nanopores can reduce nonspecific analyte adsorption to the nanopore sidewalls and increase the sensing selectivity by providing possibilities for te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 6 vom: 18. Feb., Seite 1446-1453
1. Verfasser: Zeng, Shuangshuang (VerfasserIn)
Weitere Verfasser: Li, Shiyu, Utterström, Johanna, Wen, Chenyu, Selegård, Robert, Zhang, Shi-Li, Aili, Daniel, Zhang, Zhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM305686380
003 DE-627
005 20231225121722.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b03637  |2 doi 
028 5 2 |a pubmed24n1018.xml 
035 |a (DE-627)NLM305686380 
035 |a (NLM)31971393 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Shuangshuang  |e verfasserin  |4 aut 
245 1 0 |a Mechanism and Kinetics of Lipid Bilayer Formation in Solid-State Nanopores 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.07.2020 
500 |a Date Revised 16.07.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Solid-state nanopores provide a highly versatile platform for rapid electrical detection and analysis of single molecules. Lipid bilayer coating of the nanopores can reduce nonspecific analyte adsorption to the nanopore sidewalls and increase the sensing selectivity by providing possibilities for tethering specific ligands in a cell-membrane mimicking environment. However, the mechanism and kinetics of lipid bilayer formation from vesicles remain unclear in the presence of nanopores. In this work, we used a silicon-based, truncated pyramidal nanopore array as the support for lipid bilayer formation. Lipid bilayer formation in the nanopores was monitored in real time by the change in ionic current through the nanopores. Statistical analysis revealed that a lipid bilayer is formed from the instantaneous rupture of individual vesicle upon adsorption in the nanopores, differing from the generally agreed mechanism that lipid bilayer forms at a high vesicle surface coverage on a planar support. The dependence of the lipid bilayer formation process on the applied bias, vesicle size, and concentration was systematically studied. In addition, the nonfouling properties of the lipid bilayer coated nanopores were demonstrated during long single-stranded DNA translocation through the nanopore array. The findings indicate that the lipid bilayer formation process can be modulated by introducing nanocavities intentionally on the planar surface to create active sites or changing the vesicle size and concentration 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Shiyu  |e verfasserin  |4 aut 
700 1 |a Utterström, Johanna  |e verfasserin  |4 aut 
700 1 |a Wen, Chenyu  |e verfasserin  |4 aut 
700 1 |a Selegård, Robert  |e verfasserin  |4 aut 
700 1 |a Zhang, Shi-Li  |e verfasserin  |4 aut 
700 1 |a Aili, Daniel  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 6 vom: 18. Feb., Seite 1446-1453  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:6  |g day:18  |g month:02  |g pages:1446-1453 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b03637  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 6  |b 18  |c 02  |h 1446-1453