|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM30564954X |
003 |
DE-627 |
005 |
20250226145233.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/eraa037
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1018.xml
|
035 |
|
|
|a (DE-627)NLM30564954X
|
035 |
|
|
|a (NLM)31967643
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dubois, Marieke
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Plant growth under suboptimal water conditions
|b early responses and methods to study them
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 12.04.2021
|
500 |
|
|
|a Date Revised 12.04.2021
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
|
520 |
|
|
|a Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Drought
|
650 |
|
4 |
|a mannitol
|
650 |
|
4 |
|a osmotic stress
|
650 |
|
4 |
|a polyethylene glycol
|
650 |
|
4 |
|a salt
|
650 |
|
4 |
|a signaling
|
650 |
|
4 |
|a sorbitol
|
650 |
|
4 |
|a stress response
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
700 |
1 |
|
|a Inzé, Dirk
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 71(2020), 5 vom: 12. März, Seite 1706-1722
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnas
|
773 |
1 |
8 |
|g volume:71
|g year:2020
|g number:5
|g day:12
|g month:03
|g pages:1706-1722
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/eraa037
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 71
|j 2020
|e 5
|b 12
|c 03
|h 1706-1722
|