Polyglycidol-Stabilized Nanoparticles as a Promising Alternative to Nanoparticle PEGylation : Polymer Synthesis and Protein Fouling Considerations

We herein demonstrate the outstanding protein-repelling characteristic of star-like micelles and polymersomes manufactured from amphiphilic block copolymers made by poly(butylene oxide) (PBO) hydrophobic segments and polyglycidol (PGL) hydrophilic outer shells. Although positively charged proteins (...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 5 vom: 11. Feb., Seite 1266-1278
1. Verfasser: Du, Haiqin (VerfasserIn)
Weitere Verfasser: de Oliveira, Fernando A, Albuquerque, Lindomar J C, Tresset, Guillaume, Pavlova, Ewa, Huin, Cécile, Guégan, Philippe, Giacomelli, Fernando C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Immunoglobulin G Micelles Propylene Glycols Surface-Active Agents polyglycidol Serum Albumin, Bovine 27432CM55Q Muramidase EC 3.2.1.17
LEADER 01000naa a22002652 4500
001 NLM305596578
003 DE-627
005 20231225121528.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b03687  |2 doi 
028 5 2 |a pubmed24n1018.xml 
035 |a (DE-627)NLM305596578 
035 |a (NLM)31961691 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Haiqin  |e verfasserin  |4 aut 
245 1 0 |a Polyglycidol-Stabilized Nanoparticles as a Promising Alternative to Nanoparticle PEGylation  |b Polymer Synthesis and Protein Fouling Considerations 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.04.2021 
500 |a Date Revised 12.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We herein demonstrate the outstanding protein-repelling characteristic of star-like micelles and polymersomes manufactured from amphiphilic block copolymers made by poly(butylene oxide) (PBO) hydrophobic segments and polyglycidol (PGL) hydrophilic outer shells. Although positively charged proteins (herein modeled by lysozyme) may adsorb onto the surface of micelles and polymersomes where the assemblies are stabilized by short PGL chains (degree of polymerization smaller than 15), the protein adsorption vanishes when the degree of polymerization of the hydrophilic segment (PGL) is higher than ∼20, regardless the morphology. This has been probed by using three different model proteins which are remarkably different concerning molecular weight, size, and zeta potential (bovine serum albumin (BSA), lysozyme, and immunoglobulin G (IgG)). Indeed, the adsorption of the most abundant plasma protein (herein modeled as BSA) is circumvented even by using very short PGL shells due to the highly negative zeta potential of the produced assemblies which presumably promote protein-nanoparticle electrostatic repulsion. The negative zeta potential, on the other hand, enables lysozyme adsorption, and the phenomenon is governed by electrostatic forces as evidenced by isothermal titration calorimetry. Nevertheless, the protein coating can be circumvented by slightly increasing the degree of polymerization of the hydrophilic segment. Notably, the PGL length required to circumvent protein fouling is significantly smaller than the one required for PEO. This feature and the safety concerns regarding the synthetic procedures on the preparation of poly(ethylene oxide)-based amphiphilic copolymers might make polyglycidol a promising alternative toward the production of nonfouling spherical particles 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Immunoglobulin G  |2 NLM 
650 7 |a Micelles  |2 NLM 
650 7 |a Propylene Glycols  |2 NLM 
650 7 |a Surface-Active Agents  |2 NLM 
650 7 |a polyglycidol  |2 NLM 
650 7 |a Serum Albumin, Bovine  |2 NLM 
650 7 |a 27432CM55Q  |2 NLM 
650 7 |a Muramidase  |2 NLM 
650 7 |a EC 3.2.1.17  |2 NLM 
700 1 |a de Oliveira, Fernando A  |e verfasserin  |4 aut 
700 1 |a Albuquerque, Lindomar J C  |e verfasserin  |4 aut 
700 1 |a Tresset, Guillaume  |e verfasserin  |4 aut 
700 1 |a Pavlova, Ewa  |e verfasserin  |4 aut 
700 1 |a Huin, Cécile  |e verfasserin  |4 aut 
700 1 |a Guégan, Philippe  |e verfasserin  |4 aut 
700 1 |a Giacomelli, Fernando C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 5 vom: 11. Feb., Seite 1266-1278  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:5  |g day:11  |g month:02  |g pages:1266-1278 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b03687  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 5  |b 11  |c 02  |h 1266-1278