|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM305567225 |
003 |
DE-627 |
005 |
20231225121450.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2020.01.005
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1018.xml
|
035 |
|
|
|a (DE-627)NLM305567225
|
035 |
|
|
|a (NLM)31958679
|
035 |
|
|
|a (PII)S0981-9428(20)30005-X
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Scartazza, Andrea
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.04.2020
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2020 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-β-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Carboxylation efficiency
|
650 |
|
4 |
|a Electron transport rate
|
650 |
|
4 |
|a Light energy dissipation
|
650 |
|
4 |
|a Photosynthetic pigments
|
650 |
|
4 |
|a Plant hormones
|
650 |
|
4 |
|a Real-time quantitative PCR
|
650 |
|
7 |
|a Photosystem II Protein Complex
|2 NLM
|
650 |
|
7 |
|a Chlorophyll
|2 NLM
|
650 |
|
7 |
|a 1406-65-1
|2 NLM
|
650 |
|
7 |
|a Salicylic Acid
|2 NLM
|
650 |
|
7 |
|a O414PZ4LPZ
|2 NLM
|
700 |
1 |
|
|a Fambrini, Marco
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mariotti, Lorenzo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Picciarelli, Piero
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pugliesi, Claudio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 148(2020) vom: 01. März, Seite 122-132
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnns
|
773 |
1 |
8 |
|g volume:148
|g year:2020
|g day:01
|g month:03
|g pages:122-132
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2020.01.005
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 148
|j 2020
|b 01
|c 03
|h 122-132
|