|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM305435388 |
003 |
DE-627 |
005 |
20231225121158.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201907014
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1018.xml
|
035 |
|
|
|a (DE-627)NLM305435388
|
035 |
|
|
|a (NLM)31945230
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Zhenzhen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Chemically Tailored Multifunctional Asymmetric Isoporous Triblock Terpolymer Membranes for Selective Transport
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Membrane-based separation of organic molecules with 1-2 nm lateral dimensions is a demanding but rather underdeveloped technology. The major challenge is to fabricate membranes having distinct nanochannels with desired functionality. Here, a bottom-up strategy to produce such a membrane using a tailor-made triblock terpolymer featuring miscible end blocks with two different functional groups is demonstrated. A scalable multifunctional integral asymmetric isoporous membrane is fabricated by the solvent evaporation-induced self-assembly of the block copolymer combined with nonsolvent-induced phase separation. The membrane nanopores are readily functionalized using positively and negatively charged moieties by two straightforward gas-solid reactions. The pores of the post-functionalized membranes act as target-specific functional soft nanochannels due to swelling of the polyelectrolyte blocks in a hydrated state. The membranes show unprecedented separation selectivity of small molecules based on size and/or charge which demonstrates the potential of the proposed strategy to prepare next-generation nanofiltration membranes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a block copolymer
|
650 |
|
4 |
|a nanochannels
|
650 |
|
4 |
|a nanofiltration membranes
|
650 |
|
4 |
|a polyelectrolytes
|
650 |
|
4 |
|a post-modification
|
700 |
1 |
|
|a Rahman, Md Mushfequr
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Abetz, Clarissa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Höhme, Anke-Lisa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sperling, Evgeni
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Abetz, Volker
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 8 vom: 18. Feb., Seite e1907014
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:8
|g day:18
|g month:02
|g pages:e1907014
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201907014
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 8
|b 18
|c 02
|h e1907014
|