Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 9 vom: 15. März, Seite e1906439
1. Verfasser: Albisetti, Edoardo (VerfasserIn)
Weitere Verfasser: Tacchi, Silvia, Silvani, Raffaele, Scaramuzzi, Giuseppe, Finizio, Simone, Wintz, Sebastian, Rinaldi, Christian, Cantoni, Matteo, Raabe, Jörg, Carlotti, Giovanni, Bertacco, Riccardo, Riedo, Elisa, Petti, Daniela
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article nanomagnonics scanning probe lithography scanning transmission X-ray microscopy spin textures spin waves synthetic antiferromagnet
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated optically inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction-limited spin-wave beams, and generating robust multi-beam interference patterns, which spatially extend for several times the spin-wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin-wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201906439