A Self-Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 8 vom: 01. Feb., Seite e1906475
Auteur principal: Hou, Shuai (Auteur)
Autres auteurs: Chen, Yonghao, Lu, Derong, Xiong, Qirong, Lim, Yun, Duan, Hongwei
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article fluorescence enhancement fluorescence resonance energy transfer live cell imaging microarray assay plasmonic substrates Biocompatible Materials Carbocyanines Fluorescent Dyes Indoles plus... Polymers cyanine dye 3 polydopamine Silver 3M4G523W1G Epidermal Growth Factor 62229-50-9 Gold 7440-57-5
LEADER 01000caa a22002652c 4500
001 NLM305418777
003 DE-627
005 20250226135915.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201906475  |2 doi 
028 5 2 |a pubmed25n1017.xml 
035 |a (DE-627)NLM305418777 
035 |a (NLM)31943423 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hou, Shuai  |e verfasserin  |4 aut 
245 1 2 |a A Self-Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.11.2020 
500 |a Date Revised 18.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Fluorescence resonance energy transfer (FRET) has found widespread uses in biosensing, molecular imaging, and light harvesting. Plasmonic metal nanostructures offer the possibility of engineering photonic environment of specific fluorophores to enhance the FRET efficiency. However, the potential of plasmonic nanostructures to enable tailored FRET enhancement on planar substrates remains largely unrealized, which are of considerable interest for high-performance on-surface bioassays and photovoltaics. The main challenge lies in the necessitated concurrent control over the spectral properties of plasmonic substrates to match that of fluorophores and the fluorophore-substrate spacing. Here, a self-assembled plasmonic substrate based on polydopamine (PDA)-coated plasmonic nanocrystals is developed to effectively address this challenge. The PDA coating not only drives interfacial self-assembly of the nanocrystals to form closely packed arrays with customized optical properties, but also can serve as a tailored nanoscale spacer between the fluorophores and plasmonic nanocrystals, which collectively lead to optimized fluorescence enhancement. The biocompatible plasmonic substrate that allows convenient bioconjugation imparted by PDA has afforded improved FRET efficiency in DNA microarray assay and FRET imaging of live cells. It is envisioned that the self-assembled plasmonic substrates can be readily integrated into fluorescence-based platforms for diverse biomedical and photoconversion applications 
650 4 |a Journal Article 
650 4 |a fluorescence enhancement 
650 4 |a fluorescence resonance energy transfer 
650 4 |a live cell imaging 
650 4 |a microarray assay 
650 4 |a plasmonic substrates 
650 7 |a Biocompatible Materials  |2 NLM 
650 7 |a Carbocyanines  |2 NLM 
650 7 |a Fluorescent Dyes  |2 NLM 
650 7 |a Indoles  |2 NLM 
650 7 |a Polymers  |2 NLM 
650 7 |a cyanine dye 3  |2 NLM 
650 7 |a polydopamine  |2 NLM 
650 7 |a Silver  |2 NLM 
650 7 |a 3M4G523W1G  |2 NLM 
650 7 |a Epidermal Growth Factor  |2 NLM 
650 7 |a 62229-50-9  |2 NLM 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
700 1 |a Chen, Yonghao  |e verfasserin  |4 aut 
700 1 |a Lu, Derong  |e verfasserin  |4 aut 
700 1 |a Xiong, Qirong  |e verfasserin  |4 aut 
700 1 |a Lim, Yun  |e verfasserin  |4 aut 
700 1 |a Duan, Hongwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 8 vom: 01. Feb., Seite e1906475  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:32  |g year:2020  |g number:8  |g day:01  |g month:02  |g pages:e1906475 
856 4 0 |u http://dx.doi.org/10.1002/adma.201906475  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 8  |b 01  |c 02  |h e1906475