Semantic Segmentation with Context Encoding and Multi-Path Decoding

Semantic image segmentation aims to classify every pixel of a scene image to one of many classes. It implicitly involves object recognition, localization, and boundary delineation. In this paper, we propose a segmentation network called CGBNet to enhance the paring results by context encoding and mu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 09. Jan.
1. Verfasser: Ding, Henghui (VerfasserIn)
Weitere Verfasser: Jiang, Xudong, Shuai, Bing, Liu, Ai Qun, Wang, Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM305390341
003 DE-627
005 20240229162456.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2962685  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM305390341 
035 |a (NLM)31940532 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Henghui  |e verfasserin  |4 aut 
245 1 0 |a Semantic Segmentation with Context Encoding and Multi-Path Decoding 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Semantic image segmentation aims to classify every pixel of a scene image to one of many classes. It implicitly involves object recognition, localization, and boundary delineation. In this paper, we propose a segmentation network called CGBNet to enhance the paring results by context encoding and multi-path decoding. We first propose a context encoding module that generates context contrasted local feature to make use of the informative context and the discriminative local information. This context encoding module greatly improves the segmentation performance, especially for inconspicuous objects. Furthermore, we propose a scale-selection scheme to selectively fuse the parsing results from different-scales of features at every spatial position. It adaptively selects appropriate score maps from rich scales of features. To improve the parsing results of boundary, we further propose a boundary delineation module that encourages the location-specific very-low-level feature near the boundaries to take part in the final prediction and suppresses them far from the boundaries. Without bells and whistles, the proposed segmentation network achieves very competitive performance in terms of all three different evaluation metrics consistently on the four popular scene segmentation datasets, Pascal Context, SUN-RGBD, Sift Flow, and COCO Stuff 
650 4 |a Journal Article 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
700 1 |a Shuai, Bing  |e verfasserin  |4 aut 
700 1 |a Liu, Ai Qun  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 09. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:09  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2962685  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 09  |c 01