Discriminative Multi-view Privileged Information Learning for Image Re-ranking

Conventional multi-view re-ranking methods usually perform asymmetrical matching between the region of interest (ROI) in the query image and the whole target image for similarity computation. Due to the inconsistency in the visual appearance, this practice tends to degrade the retrieval accuracy par...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 09. Jan.
1. Verfasser: Li, Jun (VerfasserIn)
Weitere Verfasser: Xu, Chang, Yang, Wankou, Sun, Changyin, Xu, Jianhua, Zhang, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM305390317
003 DE-627
005 20240229162456.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2962667  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM305390317 
035 |a (NLM)31940531 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jun  |e verfasserin  |4 aut 
245 1 0 |a Discriminative Multi-view Privileged Information Learning for Image Re-ranking 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Conventional multi-view re-ranking methods usually perform asymmetrical matching between the region of interest (ROI) in the query image and the whole target image for similarity computation. Due to the inconsistency in the visual appearance, this practice tends to degrade the retrieval accuracy particularly when the image ROI, which is usually interpreted as the image objectness, accounts for a smaller region in the image. Since Privileged Information (PI), which can be viewed as the image prior, is able to characterize well the image objectness, we are aiming at leveraging PI for further improving the performance of multi-view re-ranking in this paper. Towards this end, we propose a discriminative multi-view re-ranking approach in which both the original global image visual contents and the local auxiliary PI features are simultaneously integrated into a unified training framework for generating the latent subspaces with sufficient discriminating power. For the on-the-fly re-ranking, since the multi-view PI features are unavailable, we only project the original multi-view image representations onto the latent subspace, and thus the re-ranking can be achieved by computing and sorting the distances from the multi-view embeddings to the separating hyperplane. Extensive experimental evaluations on the two public benchmarks, Oxford5k and Paris6k, reveal that our approach provides further performance boost for accurate image re-ranking, whilst the comparative study demonstrates the advantage of our method against other multi-view re-ranking methods 
650 4 |a Journal Article 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
700 1 |a Yang, Wankou  |e verfasserin  |4 aut 
700 1 |a Sun, Changyin  |e verfasserin  |4 aut 
700 1 |a Xu, Jianhua  |e verfasserin  |4 aut 
700 1 |a Zhang, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 09. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:09  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2962667  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 09  |c 01