Paying Attention to Video Object Pattern Understanding

This paper conducts a systematic study on the role of visual attention in video object pattern understanding. By elaborately annotating three popular video segmentation datasets (DAVIS 16, Youtube-Objects, and SegTrack V2) with dynamic eye-tracking data in the unsupervised video object segmentation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 7 vom: 10. Juli, Seite 2413-2428
1. Verfasser: Wang, Wenguan (VerfasserIn)
Weitere Verfasser: Shen, Jianbing, Lu, Xiankai, Hoi, Steven C H, Ling, Haibin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM305390244
003 DE-627
005 20231225121054.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2966453  |2 doi 
028 5 2 |a pubmed24n1017.xml 
035 |a (DE-627)NLM305390244 
035 |a (NLM)31940522 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wenguan  |e verfasserin  |4 aut 
245 1 0 |a Paying Attention to Video Object Pattern Understanding 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2021 
500 |a Date Revised 27.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper conducts a systematic study on the role of visual attention in video object pattern understanding. By elaborately annotating three popular video segmentation datasets (DAVIS 16, Youtube-Objects, and SegTrack V2) with dynamic eye-tracking data in the unsupervised video object segmentation (UVOS) setting. For the first time, we quantitatively verified the high consistency of visual attention behavior among human observers, and found strong correlation between human attention and explicit primary object judgments during dynamic, task-driven viewing. Such novel observations provide an in-depth insight of the underlying rationale behind video object pattens. Inspired by these findings, we decouple UVOS into two sub-tasks: UVOS-driven Dynamic Visual Attention Prediction (DVAP) in spatiotemporal domain, and Attention-Guided Object Segmentation (AGOS) in spatial domain. Our UVOS solution enjoys three major advantages: 1) modular training without using expensive video segmentation annotations, instead, using more affordable dynamic fixation data to train the initial video attention module and using existing fixation-segmentation paired static/image data to train the subsequent segmentation module; 2) comprehensive foreground understanding through multi-source learning; and 3) additional interpretability from the biologically-inspired and assessable attention. Experiments on four popular benchmarks show that, even without using expensive video object mask annotations, our model achieves compelling performance compared with state-of-the-arts and enjoys fast processing speed (10 fps on a single GPU). Our collected eye-tracking data and algorithm implementations have been made publicly available at https://github.com/wenguanwang/AGS 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shen, Jianbing  |e verfasserin  |4 aut 
700 1 |a Lu, Xiankai  |e verfasserin  |4 aut 
700 1 |a Hoi, Steven C H  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 7 vom: 10. Juli, Seite 2413-2428  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:7  |g day:10  |g month:07  |g pages:2413-2428 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2966453  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 7  |b 10  |c 07  |h 2413-2428