Physiological response and transcription profiling analysis reveal the role of glutathione in H2S-induced chilling stress tolerance of cucumber seedlings

Copyright © 2019 Elsevier B.V. All rights reserved.

Détails bibliographiques
Publié dans:Plant science : an international journal of experimental plant biology. - 1985. - 291(2020) vom: 01. Feb., Seite 110363
Auteur principal: Liu, Fengjiao (Auteur)
Autres auteurs: Zhang, Xiaowei, Cai, Bingbing, Pan, Dongyun, Fu, Xin, Bi, Huangai, Ai, Xizhen
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Plant science : an international journal of experimental plant biology
Sujets:Journal Article Chilling tolerance Cucumber Glutathione Hydrogen sulfide Signal GAN16C9B8O Hydrogen Sulfide YY9FVM7NSN
Description
Résumé:Copyright © 2019 Elsevier B.V. All rights reserved.
Recent reports have uncovered the multifunctional role of H2S in the physiological response of plants to biotic and abiotic stresses. Here, we studied whether NaHS (an H2S donor) pretreatment could provoke the tolerance of cucumber (Cucumis sativus L.) seedlings subsequently exposed to chilling stress and whether glutathione was involved in this process. Results showed that cucumber seedlings sprayed with NaHS exhibited remarkably increased chilling tolerance, as evidenced by the observed plant tolerant phenotype, as well as the lower levels of electrolyte leakage (EL), malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content and RBOH mRNA abundance, compared with the control plants. In addition, NaHS treatment increased the endogenous content of the reduced glutathione (GSH) and the ratio of reduced/oxidized glutathione (GSH/GSSG), meanwhile, the higher net photosynthetic rate (Anet), the light-saturated CO2 assimilation rate (Asat), the photochemical efficiency (Fv/Fm) and the maximum photochemical efficiency of PSII in darkness (ФPSII) as well as the mRNA levels and activities of the key photosynthetic enzymes (Rubisco, TK, SBPase and FBA) were observed in NaHS-treated seedlings under chilling stress, whereas this effect of NaHS was weakened by buthionine sulfoximine (BSO, an inhibitor of glutathione) or 6-Aminonicotinamide (6-AN, a specific pentose inhibitor and thus inhibits the NADPH production), which preliminarily proved the interaction between H2S and GSH. Moreover, transcription profiling analysis revealed that the GSH-associated genes (GST Tau, MAAI, APX, GR, GS and MDHAR) were significantly up-regulated in NaHS-treated cucumber seedlings, compared to the H2O-treated seedlings under chilling stress. Thus, novel results highlight the importance of glutathione as a downstream signal of H2S-induced plant tolerance to chilling stress
Description:Date Completed 01.06.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2019.110363