Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 4 vom: 04. Apr., Seite 2668-2685
1. Verfasser: Zhang, Haicheng (VerfasserIn)
Weitere Verfasser: Goll, Daniel S, Wang, Ying-Ping, Ciais, Philippe, Wieder, William R, Abramoff, Rose, Huang, Yuanyuan, Guenet, Bertrand, Prescher, Anne-Katrin, Viscarra Rossel, Raphael A, Barré, Pierre, Chenu, Claire, Zhou, Guoyi, Tang, Xuli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article climate change microbial physiology soil biogeochemical model soil carbon classification soil carbon stabilization soil organic carbon soil physicochemical property
LEADER 01000naa a22002652 4500
001 NLM305247360
003 DE-627
005 20231225120747.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14994  |2 doi 
028 5 2 |a pubmed24n1017.xml 
035 |a (DE-627)NLM305247360 
035 |a (NLM)31926046 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Haicheng  |e verfasserin  |4 aut 
245 1 0 |a Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a First-order organic matter decomposition models are used within most Earth System Models (ESMs) to project future global carbon cycling; these models have been criticized for not accurately representing mechanisms of soil organic carbon (SOC) stabilization and SOC response to climate change. New soil biogeochemical models have been developed, but their evaluation is limited to observations from laboratory incubations or few field experiments. Given the global scope of ESMs, a comprehensive evaluation of such models is essential using in situ observations of a wide range of SOC stocks over large spatial scales before their introduction to ESMs. In this study, we collected a set of in situ observations of SOC, litterfall and soil properties from 206 sites covering different forest and soil types in Europe and China. These data were used to calibrate the model MIMICS (The MIcrobial-MIneral Carbon Stabilization model), which we compared to the widely used first-order model CENTURY. We show that, compared to CENTURY, MIMICS more accurately estimates forest SOC concentrations and the sensitivities of SOC to variation in soil temperature, clay content and litter input. The ratios of microbial biomass to total SOC predicted by MIMICS agree well with independent observations from globally distributed forest sites. By testing different hypotheses regarding (using alternative process representations) the physicochemical constraints on SOC deprotection and microbial turnover in MIMICS, the errors of simulated SOC concentrations across sites were further decreased. We show that MIMICS can resolve the dominant mechanisms of SOC decomposition and stabilization and that it can be a reliable tool for predictions of terrestrial SOC dynamics under future climate change. It also allows us to evaluate at large scale the rapidly evolving understanding of SOC formation and stabilization based on laboratory and limited filed observation 
650 4 |a Journal Article 
650 4 |a climate change 
650 4 |a microbial physiology 
650 4 |a soil biogeochemical model 
650 4 |a soil carbon classification 
650 4 |a soil carbon stabilization 
650 4 |a soil organic carbon 
650 4 |a soil physicochemical property 
700 1 |a Goll, Daniel S  |e verfasserin  |4 aut 
700 1 |a Wang, Ying-Ping  |e verfasserin  |4 aut 
700 1 |a Ciais, Philippe  |e verfasserin  |4 aut 
700 1 |a Wieder, William R  |e verfasserin  |4 aut 
700 1 |a Abramoff, Rose  |e verfasserin  |4 aut 
700 1 |a Huang, Yuanyuan  |e verfasserin  |4 aut 
700 1 |a Guenet, Bertrand  |e verfasserin  |4 aut 
700 1 |a Prescher, Anne-Katrin  |e verfasserin  |4 aut 
700 1 |a Viscarra Rossel, Raphael A  |e verfasserin  |4 aut 
700 1 |a Barré, Pierre  |e verfasserin  |4 aut 
700 1 |a Chenu, Claire  |e verfasserin  |4 aut 
700 1 |a Zhou, Guoyi  |e verfasserin  |4 aut 
700 1 |a Tang, Xuli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 4 vom: 04. Apr., Seite 2668-2685  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:4  |g day:04  |g month:04  |g pages:2668-2685 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14994  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 4  |b 04  |c 04  |h 2668-2685