Kinetic study on the slow pyrolysis of nonmetal fraction of waste printed circuit boards (NMF-WPCBs)

In this study, the pyrolysis behaviour of nonmetal fraction of waste printed circuit boards (NMF-WPCBs) was studied based on five model-free methods and distributed activation energy model (DAEM). The possible decomposition mechanism was further probed using the Criado method. Thermogravimetric anal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 38(2020), 8 vom: 15. Aug., Seite 903-910
1. Verfasser: Yao, Zhitong (VerfasserIn)
Weitere Verfasser: Xiong, Jingjing, Yu, Shaoqi, Su, Weiping, Wu, Weihong, Tang, Junhong, Wu, Daidai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Criado method Electronic waste distributed activation energy model model-free method pyrolysis kinetics
Beschreibung
Zusammenfassung:In this study, the pyrolysis behaviour of nonmetal fraction of waste printed circuit boards (NMF-WPCBs) was studied based on five model-free methods and distributed activation energy model (DAEM). The possible decomposition mechanism was further probed using the Criado method. Thermogravimetric analysis indicated that the NMF-WPCBs pyrolysis process could be divided into three stages with temperatures of 37-330°C, 330-380°C and 380-1000°C. The mass loss at different heating rate was determined as 26.85-29.98%, 13.47-24.21% and 20.43-23.36% for these stages, respectively. The activation energy (Eα) from various model-free methods first increased with degree of conversion (α) increasing from 0.05 to 0.275, and then decreased beyond this range. The coefficient (R) from the Flynn-Wall-Ozawa (FWO) method was higher, and the resulting Eα fell into the range of 214.947-565.660 kJ mol-1. For the DAEM method, the average Eα value was determined as 337.044 kJ mol-1, comparable with 329.664 kJ mol-1 from the FWO method. The thermal decomposition kinetics of NMF-WPCBs could be better described by the second-order reaction
Beschreibung:Date Completed 28.07.2020
Date Revised 28.07.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X19896630