pH-Responsive Copolymer Films Prepared by Surface-Initiated Polymerization and Simple Modification

We report the preparation of pH-responsive, ester/carboxylic acid random copolymer films via simple modification of poly(norbornene diacyl chloride) (pNBDAC), prepared via surface-initiated ring-opening metathesis polymerization, with mixtures of water and ethanol to form carboxylic acid and ethyl e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 3 vom: 28. Jan., Seite 715-722
1. Verfasser: Deng, Xuanli (VerfasserIn)
Weitere Verfasser: Livingston, Joshua L, Spear, Nathan J, Jennings, G Kane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We report the preparation of pH-responsive, ester/carboxylic acid random copolymer films via simple modification of poly(norbornene diacyl chloride) (pNBDAC), prepared via surface-initiated ring-opening metathesis polymerization, with mixtures of water and ethanol to form carboxylic acid and ethyl ester side groups. The pNBDAC film serves as a compositionally versatile platform to controllably obtain copolymers with multiple functionalities. In modifying the pNBDAC to form the copolymer film, ethanol exhibits a significantly higher reactivity with acyl chloride groups within the film than does water. The magnitude and range of the pH-responsive performance are highly dependent on the carboxylic acid content in the copolymer films, which demonstrates the effect of film hydrophilicity on the pH-responsive switching of ionic barrier properties. The resistance of the film against ion transfer can be decreased by a factor of 104 through pH change, demonstrating pH-induced switching from hydrophobic and insulating to swollen and ion-permeable films. The interactions of the copolymer films with water at different pH values were also explored. When the copolymer contains 34% carboxylic acids, a 4× greater film thickness is obtained in high pH solution than in low pH solution due to ionically driven water swelling. The reversibility of the pH-responsive performance of these copolymer films is high based on measurements using quartz crystal microbalance with dissipation (QCM-D)
Beschreibung:Date Revised 04.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b03026