DEK1 displays a strong subcellular polarity during Physcomitrella patens 3D growth

© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 226(2020), 4 vom: 01. Mai, Seite 1029-1041
1. Verfasser: Perroud, Pierre-François (VerfasserIn)
Weitere Verfasser: Meyberg, Rabea, Demko, Viktor, Quatrano, Ralph S, Olsen, Odd-Arne, Rensing, Stefan A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't 3D development DEK1 Physcomitrella patens cell polarity spermatozoid subcellular localization Plant Proteins Calpain EC 3.4.22.-
Beschreibung
Zusammenfassung:© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
Defective Kernel 1 (DEK1) is genetically at the nexus of the 3D morphogenesis of land plants. We aimed to localize DEK1 in the moss Physcomitrella patens to decipher its function during this process. To detect DEK1 in vivo, we inserted the tdTomato fluorophore into PpDEK1 gene locus. Confocal microscopy coupled with the use of time-gating allowed the precise DEK1 subcellular localization during 3D morphogenesis. DEK1 localization displays a strong polarized signal, as it is restricted to the plasma membrane domain between recently divided cells during the early steps of 3D growth development as well as during the subsequent vegetative growth. The signal furthermore displays a clear developmental pattern because it is only detectable in recently divided and elongating cells. Additionally, DEK1 localization appears to be independent of its calpain domain proteolytic activity. The DEK1 polar subcellular distribution in 3D tissue developing cells defines a functional cellular framework to explain its role in this developmental phase. Also, the observation of DEK1 during spermatogenesis suggests another biological function for this protein in plants. Finally the DEK1-tagged strain generated here provides a biological platform upon which further investigations into 3D developmental processes can be performed
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16417