Drying times : plant traits to improve crop water use efficiency and yield

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 7 vom: 06. Apr., Seite 2239-2252
1. Verfasser: Condon, Anthony G (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Crop models mesophyll conductance photosynthesis root depth stomata trait stacking vigour Water 059QF0KO0R mehr... Carbon 7440-44-0
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Crop water use efficiency (WUE) has come into sharp focus as population growth and climate change place increasing strain on the water used in cropping. Rainfed crops are being challenged by an upward trend in evaporative demand as average temperatures rise and, in many regions, there is an increased irregularity and a downward trend in rainfall. In addition, irrigated cropping faces declining water availability and increased competition from other users. Crop WUE would be improved by, first, ensuring that as much water as possible is actually transpired by the crop rather than being wasted. Deeper roots and greater early crop vigour are two traits that should help achieve this. Crop WUE would also be improved by achieving greater biomass per unit water transpired. A host of traits has been proposed to address this outcome. Restricting crop transpiration through lower stomatal conductance is assessed as having limited utility compared with traits that improve carbon gain, such as enhancements to photosynthetic biochemistry and responsiveness, or greater mesophyll conductance. Ultimately, the most useful outcomes for improved crop WUE will probably be achieved by combining traits to achieve synergistic benefit. The potential utility of trait combinations is supported by the results of crop simulation modelling
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa002