A Multistage Refinement Network for Salient Object Detection

Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To accurately detect and segment salient objects, it is necessary to extract and combine high-level semantic features with low-level fine det...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 03. Jan.
1. Verfasser: Zhang, Lihe (VerfasserIn)
Weitere Verfasser: Wu, Jie, Wang, Tiantian, Borji, Ali, Wei, Guohua, Lu, Huchuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM30504656X
003 DE-627
005 20240229162450.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2962688  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM30504656X 
035 |a (NLM)31905138 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lihe  |e verfasserin  |4 aut 
245 1 2 |a A Multistage Refinement Network for Salient Object Detection 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To accurately detect and segment salient objects, it is necessary to extract and combine high-level semantic features with low-level fine details simultaneously. This is challenging for CNNs because repeated subsampling operations such as pooling and convolution lead to a significant decrease in the feature resolution, which results in the loss of spatial details and finer structures. Therefore, we propose augmenting feedforward neural networks by using the multistage refinement mechanism. In the first stage, a master net is built to generate a coarse prediction map in which most detailed structures are missing. In the following stages, the refinement net with layerwise recurrent connections to the master net is equipped to progressively combine local context information across stages to refine the preceding saliency maps in a stagewise manner. Furthermore, the pyramid pooling module and channel attention module are applied to aggregate different-region-based global contexts. Extensive evaluations over six benchmark datasets show that the proposed method performs favorably against the state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Wu, Jie  |e verfasserin  |4 aut 
700 1 |a Wang, Tiantian  |e verfasserin  |4 aut 
700 1 |a Borji, Ali  |e verfasserin  |4 aut 
700 1 |a Wei, Guohua  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 03. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:03  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2962688  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 03  |c 01