Structure and Texture-Aware Image Decomposition via Training a Neural Network

Structure-texture image decomposition is a funda-mental but challenging topic in computational graphics and image processing. In this paper, we introduce a structure-aware and a texture-aware measures to facilitate the structure-texture de-composition (STD) of images. Edge strengths and spatial scal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 27. Dez.
1. Verfasser: Zhou, Fei (VerfasserIn)
Weitere Verfasser: Chen, Qun, Liu, Bozhi, Qiu, Guoping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM304990132
003 DE-627
005 20240229162447.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2961232  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM304990132 
035 |a (NLM)31899425 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Fei  |e verfasserin  |4 aut 
245 1 0 |a Structure and Texture-Aware Image Decomposition via Training a Neural Network 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Structure-texture image decomposition is a funda-mental but challenging topic in computational graphics and image processing. In this paper, we introduce a structure-aware and a texture-aware measures to facilitate the structure-texture de-composition (STD) of images. Edge strengths and spatial scales that have been widely-used in previous STD researches cannot describe the structures and textures of images well. The proposed two measures differentiate image textures from image structures based on their distinctive characteristics. Specifically, the first one aims to measure the anisotropy of local gradients, and the second one is designed to measure the repeatability degree of signal pat-terns in a neighboring region. Since these two measures describe different properties of image structures and textures, they are complementary to each other. The STD is achieved by optimizing an objective function based on the two new measures. As using traditional optimization methods to solve the optimization prob-lem will require designing different optimizers for different func-tional spaces, we employ an architecture of deep neural network to optimize the STD cost function in a unified manner. The ex-perimental results demonstrate that, as compared with some state-of-the-art methods, our method can better separate image structure and texture and result in shaper edges in the structural component. Furthermore, to demonstrate the usefulness of the proposed STD method, we have successfully applied it to several applications including detail enhancement, edge detection, and visual quality assessment of super-resolved images 
650 4 |a Journal Article 
700 1 |a Chen, Qun  |e verfasserin  |4 aut 
700 1 |a Liu, Bozhi  |e verfasserin  |4 aut 
700 1 |a Qiu, Guoping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 27. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:27  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2961232  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 27  |c 12