|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM304990132 |
003 |
DE-627 |
005 |
20240229162447.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2019.2961232
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM304990132
|
035 |
|
|
|a (NLM)31899425
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhou, Fei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Structure and Texture-Aware Image Decomposition via Training a Neural Network
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Structure-texture image decomposition is a funda-mental but challenging topic in computational graphics and image processing. In this paper, we introduce a structure-aware and a texture-aware measures to facilitate the structure-texture de-composition (STD) of images. Edge strengths and spatial scales that have been widely-used in previous STD researches cannot describe the structures and textures of images well. The proposed two measures differentiate image textures from image structures based on their distinctive characteristics. Specifically, the first one aims to measure the anisotropy of local gradients, and the second one is designed to measure the repeatability degree of signal pat-terns in a neighboring region. Since these two measures describe different properties of image structures and textures, they are complementary to each other. The STD is achieved by optimizing an objective function based on the two new measures. As using traditional optimization methods to solve the optimization prob-lem will require designing different optimizers for different func-tional spaces, we employ an architecture of deep neural network to optimize the STD cost function in a unified manner. The ex-perimental results demonstrate that, as compared with some state-of-the-art methods, our method can better separate image structure and texture and result in shaper edges in the structural component. Furthermore, to demonstrate the usefulness of the proposed STD method, we have successfully applied it to several applications including detail enhancement, edge detection, and visual quality assessment of super-resolved images
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Chen, Qun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Bozhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiu, Guoping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g (2019) vom: 27. Dez.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g year:2019
|g day:27
|g month:12
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2019.2961232
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2019
|b 27
|c 12
|