Deep Clustering : On the Link Between Discriminative Models and K-Means

In the context of recent deep clustering studies, discriminative models dominate the literature and report the most competitive performances. These models learn a deep discriminative neural network classifier in which the labels are latent. Typically, they use multinomial logistic regression posteri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 6 vom: 01. Juni, Seite 1887-1896
1. Verfasser: Jabi, Mohammed (VerfasserIn)
Weitere Verfasser: Pedersoli, Marco, Mitiche, Amar, Ayed, Ismail Ben
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM304989967
003 DE-627
005 20231225120200.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2962683  |2 doi 
028 5 2 |a pubmed24n1016.xml 
035 |a (DE-627)NLM304989967 
035 |a (NLM)31899413 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jabi, Mohammed  |e verfasserin  |4 aut 
245 1 0 |a Deep Clustering  |b On the Link Between Discriminative Models and K-Means 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the context of recent deep clustering studies, discriminative models dominate the literature and report the most competitive performances. These models learn a deep discriminative neural network classifier in which the labels are latent. Typically, they use multinomial logistic regression posteriors and parameter regularization, as is very common in supervised learning. It is generally acknowledged that discriminative objective functions (e.g., those based on the mutual information or the KL divergence) are more flexible than generative approaches (e.g., K-means) in the sense that they make fewer assumptions about the data distributions and, typically, yield much better unsupervised deep learning results. On the surface, several recent discriminative models may seem unrelated to K-means. This study shows that these models are, in fact, equivalent to K-means under mild conditions and common posterior models and parameter regularization. We prove that, for the commonly used logistic regression posteriors, maximizing the L2 regularized mutual information via an approximate alternating direction method (ADM) is equivalent to minimizing a soft and regularized K-means loss. Our theoretical analysis not only connects directly several recent state-of-the-art discriminative models to K-means, but also leads to a new soft and regularized deep K-means algorithm, which yields competitive performance on several image clustering benchmarks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pedersoli, Marco  |e verfasserin  |4 aut 
700 1 |a Mitiche, Amar  |e verfasserin  |4 aut 
700 1 |a Ayed, Ismail Ben  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 6 vom: 01. Juni, Seite 1887-1896  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:6  |g day:01  |g month:06  |g pages:1887-1896 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2962683  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 6  |b 01  |c 06  |h 1887-1896