Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme

© 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 9 vom: 05. Apr., Seite 922-939
1. Verfasser: Garcia-Ratés, Miquel (VerfasserIn)
Weitere Verfasser: Neese, Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article C-PCM density functional theory implicit solvation
LEADER 01000naa a22002652 4500
001 NLM304892580
003 DE-627
005 20231225115949.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26139  |2 doi 
028 5 2 |a pubmed24n1016.xml 
035 |a (DE-627)NLM304892580 
035 |a (NLM)31889331 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Garcia-Ratés, Miquel  |e verfasserin  |4 aut 
245 1 0 |a Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.02.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. 
520 |a The treatment of the solvation charges using Gaussian functions in the polarizable continuum model results in a smooth potential energy surface. These charges are placed on top of the surface of the solute cavity. In this article, we study the effect of the solute cavity (van der Waals-type or solvent-excluded surface-type) using the Gaussian charge scheme within the framework of the conductor-like polarizable continuum model on (a) the accuracy and computational cost of the self-consistent field (SCF) energy and its gradient and on (b) the calculation of free energies of solvation. For that purpose, we have considered a large set of systems ranging from few atoms to more than 200 atoms in different solvents. Our results at the DFT level using the B3LYP functional and the def2-TZVP basis set show that the choice of the solute cavity does neither affect the accuracy nor the cost of calculations for small systems (< 100 atoms). For larger systems, the use of a vdW-type cavity is recommended, as it prevents small oscillations in the gradient (present when using a SES-type cavity), which affect the convergence of the SCF energy gradient. Regarding the free energies of solvation, we consider a solvent-dependent probe sphere to construct the solvent-accessible surface area required to calculate the nonelectrostatic contribution to the free energy of solvation. For this part, our results for a large set of organic molecules in different solvents agree with available experimental data with an accuracy lower than 1 kcal/mol for both polar and nonpolar solvents 
650 4 |a Journal Article 
650 4 |a C-PCM 
650 4 |a density functional theory 
650 4 |a implicit solvation 
700 1 |a Neese, Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 9 vom: 05. Apr., Seite 922-939  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:9  |g day:05  |g month:04  |g pages:922-939 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26139  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 9  |b 05  |c 04  |h 922-939