Effects of Mental Fatigue on Small-World Brain Functional Network Organization

Copyright © 2019 Gang Li et al.

Bibliographische Detailangaben
Veröffentlicht in:Neural plasticity. - 1998. - 2019(2019) vom: 21., Seite 1716074
1. Verfasser: Li, Gang (VerfasserIn)
Weitere Verfasser: Luo, Youdong, Zhang, Zhengru, Xu, Yanting, Jiao, Weidong, Jiang, Yonghua, Huang, Shan, Wang, Chengwu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Neural plasticity
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM304855251
003 DE-627
005 20250226115311.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1155/2019/1716074  |2 doi 
028 5 2 |a pubmed25n1016.xml 
035 |a (DE-627)NLM304855251 
035 |a (NLM)31885535 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Gang  |e verfasserin  |4 aut 
245 1 0 |a Effects of Mental Fatigue on Small-World Brain Functional Network Organization 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.07.2020 
500 |a Date Revised 27.07.2020 
500 |a published: Electronic-eCollection 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2019 Gang Li et al. 
520 |a Brain functional network has been widely applied to investigate brain function changes among different conditions and proved to be a small-world-like network. But seldom researches explore the effects of mental fatigue on the small-world brain functional network organization. In the present study, 20 healthy individuals were included to do a consecutive mental arithmetic task to induce mental fatigue, and scalp electroencephalogram (EEG) signals were recorded before and after the task. Correlations between all pairs of EEG channels were determined by mutual information (MI). The resulting adjacency matrices were converted into brain functional networks by applying a threshold, and then, the clustering coefficient (C), characteristic path length (L), and corresponding small-world feature were calculated. Through performing analysis of variance (ANOVA) on the mean MI for every EEG rhythm, only the data of α1 rhythm during the task state were emerged for the further explorations of mental fatigue. For a wide range of thresholds, C increased and L and small-world feature decreased with the deepening mental fatigue. The pattern of the small-world characteristic still existed when computed with a constant degree. Our present findings indicated that more functional connectivities were activated at the mental fatigue stage for efficient information transmission and processing, and mental fatigue can be characterized by a reduced small-world network characteristic. Our results provide a new perspective to understand the neural mechanisms of mental fatigue based on complex network theories 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Luo, Youdong  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhengru  |e verfasserin  |4 aut 
700 1 |a Xu, Yanting  |e verfasserin  |4 aut 
700 1 |a Jiao, Weidong  |e verfasserin  |4 aut 
700 1 |a Jiang, Yonghua  |e verfasserin  |4 aut 
700 1 |a Huang, Shan  |e verfasserin  |4 aut 
700 1 |a Wang, Chengwu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Neural plasticity  |d 1998  |g 2019(2019) vom: 21., Seite 1716074  |w (DE-627)NLM098558390  |x 1687-5443  |7 nnas 
773 1 8 |g volume:2019  |g year:2019  |g day:21  |g pages:1716074 
856 4 0 |u http://dx.doi.org/10.1155/2019/1716074  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 2019  |j 2019  |b 21  |h 1716074