Flux-Corrected Transport with MT3DMS for Positive Solution of Transport with Full-Tensor Dispersion

© 2019, National Ground Water Association.

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1979. - 58(2020), 3 vom: 27. Mai, Seite 338-348
1. Verfasser: Yan, Shuo (VerfasserIn)
Weitere Verfasser: Valocchi, Albert J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Solutions
LEADER 01000caa a22002652c 4500
001 NLM304831212
003 DE-627
005 20250226114732.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gwat.12976  |2 doi 
028 5 2 |a pubmed25n1015.xml 
035 |a (DE-627)NLM304831212 
035 |a (NLM)31883114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Shuo  |e verfasserin  |4 aut 
245 1 0 |a Flux-Corrected Transport with MT3DMS for Positive Solution of Transport with Full-Tensor Dispersion 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.07.2020 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019, National Ground Water Association. 
520 |a Solute transport is usually modeled by the advection-dispersion-reaction equation. In the standard approach, mechanical dispersion is a tensor with principal directions parallel and perpendicular to the flow vector. Since realistic scenarios include nonuniform and unsteady flow fields, the governing equation has full tensor mechanical dispersion. When conventional grid-based numerical methods are used, approximation of the cross terms arising from the off-diagonal terms cause nonphysical solution with oscillations. As an example, for the common scenario of contaminant input into a domain with zero initial concentration, the cross-dispersion terms can result in negative concentrations that can wreak havoc in reactive transport applications. To address this issue, we use the well-known flux-corrected-transport (FCT) technique for a standard finite volume method. Although FCT has most often been used to eliminate oscillations resulting from discretization of the advection term for explicit time stepping, we show that it can be adapted for full-tensor dispersion and implicit time stepping. Unlike other approaches based on new discretization techniques (e.g., mimetic finite difference, nonlinear finite volume), FCT has the advantage of being flexible and widely applicable. Implementation of FCT requires solving an additional system of equations at each time step, using a modified "low order" matrix and a modified right-hand-side vector. To demonstrate the flexibility of FCT, we have modified the well-known and widely used groundwater solute transport simulator, MT3DMS. We apply the new simulator, MT3DMS-FCT, to several benchmark problems that suffer from negative concentrations when using MT3DMS. The new results are mass conservative and strictly nonnegative 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Solutions  |2 NLM 
700 1 |a Valocchi, Albert J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 58(2020), 3 vom: 27. Mai, Seite 338-348  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnas 
773 1 8 |g volume:58  |g year:2020  |g number:3  |g day:27  |g month:05  |g pages:338-348 
856 4 0 |u http://dx.doi.org/10.1111/gwat.12976  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 58  |j 2020  |e 3  |b 27  |c 05  |h 338-348