Integrating Conductivity, Immobility, and Catalytic Ability into High-N Carbon/Graphene Sheets as an Effective Sulfur Host

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 7 vom: 30. Feb., Seite e1906357
1. Verfasser: Xu, Huifang (VerfasserIn)
Weitere Verfasser: Jiang, Qingbin, Zhang, Bingkai, Chen, Chao, Lin, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article catalytic ability electrical conductivity redox kinetics strong binding sulfur electrodes
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium-sulfur (Li-S) batteries are considered to be one of the most promising candidate systems for next-generation electrochemical energy storage. The major challenge of this system is the polysulfide shuttle, which results in poor cycling efficiency. In this work, a highly N-doped carbon/graphene (NC/G) sheet is designed as a sulfur host, which combines the merits of abundant N active sites and high electrical conductivity to achieve in situ anchoring-conversion of lithium polysulfides (LiPSs). Such a host not only has strong binding with LiPSs but also promotes redox kinetics, which are revealed by both experimental investigations and theoretical studies. The sulfur cathode based on the NC/G host exhibits a high initial capacity of 1380 mA h g-1 and a superior cycle stability with a low capacity decay of 0.037% per cycle within 500 cycles at 2 C. Steady areal capacity with a high sulfur loading (5.6 mg cm-2 ) is also attained even without the addition of LiNO3 in the electrolyte. This work proposes and illustrates the importance of in situ anchoring-conversion of LiPSs, offering a new strategy to design multifunctional sulfur hosts for high-performance Li-S batteries
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201906357