Confining Sub-Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 7 vom: 30. Feb., Seite e1901349 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2020
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article Pt clusters electrocatalysis hydrogen evolution reaction mesoporous carbon |
Résumé: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Electrochemical water splitting is considered as a promising approach to produce clean and sustainable hydrogen fuel. As a new class of nanomaterials with high ratio of surface atoms and tunable composition and electronic structure, metal clusters are promising candidates as catalysts. Here, a new strategy is demonstrated to synthesize active and stable Pt-based electrocatalysts for hydrogen evolution by confining Pt clusters in hollow mesoporous carbon spheres (Pt5 /HMCS). Such a structure would effectively stabilize the Pt clusters during the ligand removal process, leading to remarkable electrocatalytic performance for hydrogen production in both acidic and alkaline solutions. Particularly, the optimal Pt5 /HMCS electrocatalyst exhibits 12 times the mass activity of Pt in commercial Pt/C catalyst with similar Pt loading. This study exemplifies a simple yet effective approach to improve the cost effectiveness of precious-metal-based catalysts with stabilized metal clusters |
---|---|
Description: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201901349 |