Effect of far-red light exposure on photosynthesis and photoprotection in tomato plants transgenic for the Agrobacterium rhizogenes rolB gene

Copyright © 2019 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 245(2020) vom: 15. Feb., Seite 153095
1. Verfasser: Bettini, Priscilla P (VerfasserIn)
Weitere Verfasser: Lazzara, Luigi, Massi, Luca, Fani, Fabiola, Mauro, Maria Luisa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Agrobacterium rhizogenes Far-red Photosynthesis Solanum lycopersicum rolB Bacterial Proteins Heat-Shock Proteins, Small Photosystem II Protein Complex Plant Proteins mehr... Chlorophyll 1406-65-1 chlorophyll b 5712ZB110R RolB protein, Agrobacterium rhizogenes EC 3.2.1.- beta-Glucosidase EC 3.2.1.21 Chlorophyll A YF5Q9EJC8Y
LEADER 01000caa a22002652c 4500
001 NLM304775487
003 DE-627
005 20250226113556.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2019.153095  |2 doi 
028 5 2 |a pubmed25n1015.xml 
035 |a (DE-627)NLM304775487 
035 |a (NLM)31877472 
035 |a (PII)S0176-1617(19)30224-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bettini, Priscilla P  |e verfasserin  |4 aut 
245 1 0 |a Effect of far-red light exposure on photosynthesis and photoprotection in tomato plants transgenic for the Agrobacterium rhizogenes rolB gene 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.07.2020 
500 |a Date Revised 07.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2019 Elsevier GmbH. All rights reserved. 
520 |a Previous work showed in tomato plants harbouring the Agrobacterium rhizogenes rolB gene overexpression of genes involved in chloroplast function and stress response, significant increase in non-photochemical quenching and chlorophyll a and b content, and reduced chlorophyll a/b ratio. The latter condition being typical of plant shade where far-red is dominant, suggested a role for rolB in improving photosynthesis in such condition. To gain a better insight into these results, the photosynthetic performance of transgenic and control plants was compared by means of variable fluorescence kinetics with a WATER-PAM chlorophyll fluorometer, after 6 days-exposure to white light and to a far-red-enriched light source. Photosynthetic parameters analysed were quantum yield of photosystem II photochemistry Y(II); qL, corresponding to the fraction of open PSII reaction centers in a "lake" model of photosystem II; non-photochemical quenching and Y(NO), describing, respectively, regulated and non-regulated pathways for dissipation of excess energy. Chlorophyll a and b content was also analysed by HPLC. Finally, real-time PCR was performed to quantify the expression level of some of the chloroplast-related genes already shown to be overexpressed in transgenic plants. Quantum yield of photosystem II photochemistry decreased with increasing light intensity, showing no significant differences in both plant genotypes and light regimen. qL, on the other hand, was significantly higher at low PAR intensities, in particular in FR-treated transgenic plants. Fate of remaining light energy, channelled into regulated or non-regulated dissipation pathways, was different in transgenic and control plants, indicating a higher capability for protection from photodamage in rolB plants, particularly after exposure to far-red-enriched light. Chlorophyll a/b ratio was also decreased in transgenic plants under far-red-enriched light with respect to white light. Finally, qPCR showed that the expression of genes encoding small heat shock protein, chlorophyll a/b binding protein and carbonic anhydrase was significantly induced by far-red-enriched condition. Taken together, these data suggest the involvement of rolB in photosynthesis modulation under far-red-rich light in tomato 
650 4 |a Journal Article 
650 4 |a Agrobacterium rhizogenes 
650 4 |a Far-red 
650 4 |a Photosynthesis 
650 4 |a Solanum lycopersicum 
650 4 |a rolB 
650 7 |a Bacterial Proteins  |2 NLM 
650 7 |a Heat-Shock Proteins, Small  |2 NLM 
650 7 |a Photosystem II Protein Complex  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a chlorophyll b  |2 NLM 
650 7 |a 5712ZB110R  |2 NLM 
650 7 |a RolB protein, Agrobacterium rhizogenes  |2 NLM 
650 7 |a EC 3.2.1.-  |2 NLM 
650 7 |a beta-Glucosidase  |2 NLM 
650 7 |a EC 3.2.1.21  |2 NLM 
650 7 |a Chlorophyll A  |2 NLM 
650 7 |a YF5Q9EJC8Y  |2 NLM 
700 1 |a Lazzara, Luigi  |e verfasserin  |4 aut 
700 1 |a Massi, Luca  |e verfasserin  |4 aut 
700 1 |a Fani, Fabiola  |e verfasserin  |4 aut 
700 1 |a Mauro, Maria Luisa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 245(2020) vom: 15. Feb., Seite 153095  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnas 
773 1 8 |g volume:245  |g year:2020  |g day:15  |g month:02  |g pages:153095 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2019.153095  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 245  |j 2020  |b 15  |c 02  |h 153095