|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM304771309 |
003 |
DE-627 |
005 |
20250226113500.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.9b03034
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1015.xml
|
035 |
|
|
|a (DE-627)NLM304771309
|
035 |
|
|
|a (NLM)31877048
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Jie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Preparation of SilicaSilica Core-Shell Microspheres Using an Aqueous Two-Phase System in a Novel Microchannel Device
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.03.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In the present work, a novel microchannel device was developed and used for the preparation of core-shell microspheres combining with a dextran/poly(ethylene glycol) diacrylate (DEX/PEGDA) aqueous two-phase system. Silicasilica core-shell microspheres were prepared as a model material. Silica@silica core-shell microspheres with different sizes of cores and thicknesses of shells were prepared by using different flowrate ratios of DEX/silica and PEGDA/silica aqueous solutions. The content of colloidal silica and the calcination temperature have a significant effect on the texture properties of the prepared core-shell microspheres. The surface area decreased from 199 to 177 m2/g with an increase in the colloidal silica content from 30 to 60 wt %. For a specific colloidal silica content (50 wt %), with the increase in calcination temperature from room temperature to 650 °C, the total pore volume went through a maximum of 0.7 cm3 g-1 with a surface area of 178 m2 g-1 and pore size of 7.32 nm at 450 °C. Due to the accumulation of metal nanoparticles in DEX, different metal nanoparticles (Ni and Pd) were successfully introduced into the core of the core-shell microspheres for the preparation of silica/metal nanoparticles@silica core-shell microsphere catalysts. The catalysts showed similar catalytic performance as the metal nanoparticles for hydrogenation of 4-nitrophenol with a conversion higher than 95%. However, the core-shell microsphere catalyst is much easier to recover. The reuse experiments indicated that the core-shell catalyst has high stability
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Leilei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Lixiong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1985
|g 36(2020), 2 vom: 21. Jan., Seite 576-584
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2020
|g number:2
|g day:21
|g month:01
|g pages:576-584
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.9b03034
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2020
|e 2
|b 21
|c 01
|h 576-584
|