|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM304712272 |
003 |
DE-627 |
005 |
20240229162443.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2019.2961672
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM304712272
|
035 |
|
|
|a (NLM)31870979
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gu, Shuhang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Learned Dynamic Guidance for Depth Image Reconstruction
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth. In recent years, both optimization-based and learning-based approaches have been proposed to deal with the guided depth reconstruction problems. In this paper, we introduce a weighted analysis sparse representation (WASR) model for guided depth image enhancement, which can be considered a generalized formulation of a wide range of previous optimization-based models. We unfold the optimization by the WASR model and conduct guided depth reconstruction with dynamically changed stage-wise operations. Such a guidance strategy enables us to dynamically adjust the stage-wise operations that update the depth image, thus improving the reconstruction quality and speed. To learn the stage-wise operations in a task-driven manner, we propose two parameterizations and their corresponding methods: dynamic guidance with Gaussian RBF nonlinearity parameterization (DG-RBF) and dynamic guidance with CNN nonlinearity parameterization (DG-CNN). The network structures of the proposed DG-RBF and DG-CNN methods are designed with the the objective function of our WASR model in mind and the optimal network parameters are learned from paired training data. Such optimization-inspired network architectures enable our models to leverage the previous expertise as well as take benefit from training data. The effectiveness is validated for guided depth image super-resolution and for realistic depth image reconstruction tasks using standard benchmarks. Our DG-RBF and DG-CNN methods achieve the best quantitative results (RMSE) and better visual quality than the state-of-the-art approaches at the time of writing. The code is available at https://github.com/ShuhangGu/GuidedDepthSR
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Guo, Shi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zuo, Wangmeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yunjin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Timofte, Radu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Van Gool, Luc
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Lei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g (2019) vom: 23. Dez.
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g year:2019
|g day:23
|g month:12
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2019.2961672
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2019
|b 23
|c 12
|