Learned Dynamic Guidance for Depth Image Reconstruction

The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth. In recent years, both optimization-bas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - (2019) vom: 23. Dez.
1. Verfasser: Gu, Shuhang (VerfasserIn)
Weitere Verfasser: Guo, Shi, Zuo, Wangmeng, Chen, Yunjin, Timofte, Radu, Van Gool, Luc, Zhang, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM304712272
003 DE-627
005 20240229162443.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2961672  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM304712272 
035 |a (NLM)31870979 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gu, Shuhang  |e verfasserin  |4 aut 
245 1 0 |a Learned Dynamic Guidance for Depth Image Reconstruction 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth. In recent years, both optimization-based and learning-based approaches have been proposed to deal with the guided depth reconstruction problems. In this paper, we introduce a weighted analysis sparse representation (WASR) model for guided depth image enhancement, which can be considered a generalized formulation of a wide range of previous optimization-based models. We unfold the optimization by the WASR model and conduct guided depth reconstruction with dynamically changed stage-wise operations. Such a guidance strategy enables us to dynamically adjust the stage-wise operations that update the depth image, thus improving the reconstruction quality and speed. To learn the stage-wise operations in a task-driven manner, we propose two parameterizations and their corresponding methods: dynamic guidance with Gaussian RBF nonlinearity parameterization (DG-RBF) and dynamic guidance with CNN nonlinearity parameterization (DG-CNN). The network structures of the proposed DG-RBF and DG-CNN methods are designed with the the objective function of our WASR model in mind and the optimal network parameters are learned from paired training data. Such optimization-inspired network architectures enable our models to leverage the previous expertise as well as take benefit from training data. The effectiveness is validated for guided depth image super-resolution and for realistic depth image reconstruction tasks using standard benchmarks. Our DG-RBF and DG-CNN methods achieve the best quantitative results (RMSE) and better visual quality than the state-of-the-art approaches at the time of writing. The code is available at https://github.com/ShuhangGu/GuidedDepthSR 
650 4 |a Journal Article 
700 1 |a Guo, Shi  |e verfasserin  |4 aut 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
700 1 |a Chen, Yunjin  |e verfasserin  |4 aut 
700 1 |a Timofte, Radu  |e verfasserin  |4 aut 
700 1 |a Van Gool, Luc  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g (2019) vom: 23. Dez.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g year:2019  |g day:23  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2961672  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 23  |c 12