RIFT : Multi-modal Image Matching Based on Radiation-variation Insensitive Feature Transform

Traditional feature matching methods, such as scale-invariant feature transform (SIFT), usually use image intensity or gradient information to detect and describe feature points; however, both intensity and gradient are sensitive to nonlinear radiation distortions (NRD). To solve this problem, this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 17. Dez.
1. Verfasser: Li, Jiayuan (VerfasserIn)
Weitere Verfasser: Hu, Qingwu, Ai, Mingyao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM304700436
003 DE-627
005 20240229162443.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2959244  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM304700436 
035 |a (NLM)31869789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiayuan  |e verfasserin  |4 aut 
245 1 0 |a RIFT  |b Multi-modal Image Matching Based on Radiation-variation Insensitive Feature Transform 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Traditional feature matching methods, such as scale-invariant feature transform (SIFT), usually use image intensity or gradient information to detect and describe feature points; however, both intensity and gradient are sensitive to nonlinear radiation distortions (NRD). To solve this problem, this paper proposes a novel feature matching algorithm that is robust to large NRD. The proposed method is called radiation-variation insensitive feature transform (RIFT). There are three main contributions in RIFT. First, RIFT uses phase congruency (PC) instead of image intensity for feature point detection. RIFT considers both the number and repeatability of feature points and detects both corner points and edge points on the PC map. Second, RIFT originally proposes a maximum index map (MIM) for feature description. The MIM is constructed from the log-Gabor convolution sequence and is much more robust to NRD than traditional gradient map. Thus, RIFT not only largely improves the stability of feature detection but also overcomes the limitation of gradient information for feature description. Third, RIFT analyses the inherent influence of rotations on the values of the MIM and realises rotation invariance. We use six different types of multi-modal image datasets to evaluate RIFT, including optical-optical, infrared-optical, synthetic aperture radar (SAR)-optical, depth-optical, map-optical, and day-night datasets. Experimental results show that RIFT is superior to SIFT and SAR-SIFT on multi-modal images. To the best of our knowledge, RIFT is the first feature matching algorithm that can achieve good performance on all the abovementioned types of multi-modal images. The source code of RIFT and the multi-modal image datasets are publicly available1 
650 4 |a Journal Article 
700 1 |a Hu, Qingwu  |e verfasserin  |4 aut 
700 1 |a Ai, Mingyao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 17. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:17  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2959244  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 17  |c 12