Magneto-Capillary Particle Dynamics at Curved Interfaces : Time-Varying Fields and Drop Mixing

Spatially uniform magnetic fields induce nonzero forces on magnetic particles adsorbed at curved liquid interfaces thereby driving their motion. Such motions, prohibited in bulk fluids, arise due to interfacial constraints that couple magnetic torques to capillary forces at curved interfaces. Here,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2020) vom: 16. März
1. Verfasser: Fei, Wenjie (VerfasserIn)
Weitere Verfasser: Tzelios, Peter M, Bishop, Kyle J M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM304600555
003 DE-627
005 20240229162439.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b03119  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM304600555 
035 |a (NLM)31859516 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fei, Wenjie  |e verfasserin  |4 aut 
245 1 0 |a Magneto-Capillary Particle Dynamics at Curved Interfaces  |b Time-Varying Fields and Drop Mixing 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Spatially uniform magnetic fields induce nonzero forces on magnetic particles adsorbed at curved liquid interfaces thereby driving their motion. Such motions, prohibited in bulk fluids, arise due to interfacial constraints that couple magnetic torques to capillary forces at curved interfaces. Here, we show that time-varying (spatially uniform) magnetic fields can be used to drive a variety of steady particle motions on water drops in decane. Upon application of a precessing field, magnetic Janus particles with amphiphilic surface chemistry move either along circular orbits at the drop poles or along zigzag paths at the drop equator. The different magneto-capillary motions depend on the frequency and precession angle of the field as well as the initial position of the particle on the drop surface. Our experimental observations are reproduced and explained by a mathematical model that accounts for the relevant magnetic, capillary, and hydrodynamic forces and torques that contribute to particle motion. In addition to ferromagnetic Janus particles, we show that similar dynamics can be achieved using superparamagnetic carbonyl iron particles, which are manufactured on industrial scales and respond to even weaker magnetic fields. We demonstrate how the field-driven motion of such particles at the drop interface can induce fluid flows that effectively mix the drop interior. These results suggest that magneto-capillary particle motions could be used to enhance mass transfer within emulsions stabilized by magnetic particles 
650 4 |a Journal Article 
700 1 |a Tzelios, Peter M  |e verfasserin  |4 aut 
700 1 |a Bishop, Kyle J M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g (2020) vom: 16. März  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g year:2020  |g day:16  |g month:03 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b03119  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |j 2020  |b 16  |c 03