Preparation and Application of CO2-Triggered Switchable Solvents in Separation of Toluene/n-Heptane

Extraction is a common approach to separating aromatics and alkanes, but solvent recovery remains an issue. The polarity, hydrophobic/hydrophilic balance, and other properties of switchable solvents can be reversibly changed in the presence of various triggers, and taking advantage of this property...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 2 vom: 21. Jan., Seite 510-519
1. Verfasser: Zhang, Zidong (VerfasserIn)
Weitere Verfasser: Tu, Yuming, Yu, Hui, Liu, Weidong, Zhou, Zhiyong, Ren, Zhongqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Extraction is a common approach to separating aromatics and alkanes, but solvent recovery remains an issue. The polarity, hydrophobic/hydrophilic balance, and other properties of switchable solvents can be reversibly changed in the presence of various triggers, and taking advantage of this property can greatly simplify the process of solvent recovery. In this work, quaternation and anion exchange were used to prepare several switchable solvents by introducing OH- ions to derivatives of the amidine compound 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The resulting compounds exhibited reversible switching in response to exposure to CO2. Using toluene/n-heptane as a model hydrocarbon mixture, a reversible phase change extraction process was established. Among the four switchable solvents prepared, [C2DBU]OH showed the highest selectivity value and so was used to investigate the effect of various parameters on hydrocarbon separation. The extraction process was found to rapidly reach equilibrium when a two-phase system was generated by bubbling CO2 through the extraction mixture. Increasing the proportion of the solvent increased the selectivity for toluene, while a 1:1 ratio between the solvent and the toluene/n-heptane mixture enhanced the extraction. Increasing the initial toluene concentration reduced the selectivity for toluene, with a value of 5.97 at a toluene concentration of 20%. The switchable solvent recovered its initial state when heated at 60 °C for 1 h. Upon being reused after removal of CO2, the solvent exhibited poor separation characteristics, although the selectivity coefficient remained constant at approximately 3.1 during 10 regenerations. Finally, the mechanism of the switchable solvent effect and modeling of experimental data were investigated
Beschreibung:Date Revised 04.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b02890