Fly ash as stimulant for anaerobic digestion : effect over hydrolytic stage and methane generation rate
Thermoelectric fly ash was used as a micronutrient source for microorganisms in the anaerobic digestion process of thermally pretreated (1 hour, 120 °C) secondary sludge. The obtained results not only suggest that fly ash improves methane generation in the conversion of volatile fatty acids into met...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 80(2019), 7 vom: 18. Okt., Seite 1384-1391 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Coal Ash Sewage Methane OP0UW79H66 |
Zusammenfassung: | Thermoelectric fly ash was used as a micronutrient source for microorganisms in the anaerobic digestion process of thermally pretreated (1 hour, 120 °C) secondary sludge. The obtained results not only suggest that fly ash improves methane generation in the conversion of volatile fatty acids into methane, but also show a new observation, that the fly ash contributes in the particulate organic solubilization. The maximum methane production rate increased from 6.52 mL/L/d to 22.59 mL/L/d when fly ash was added at a dosage of 150 mg/L in biochemical methane potential tests compared with tests with no added ash. Additionally, the kinetic constants of the hydrolysis of particulate organic matter were obtained in both cases (with and without added ash) in batch reactors using a first-order kinetic model; in the case of no addition, the first-order kinetic parameter was 0.019 ± 0.002 d-1, while with ashes this value increased to 0.045 ± 0.000 d-1. Therefore, the addition of fly ash improves methane generation and hydrolytic kinetics in different orders of magnitude |
---|---|
Beschreibung: | Date Completed 19.12.2019 Date Revised 15.12.2020 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2019.391 |