Reproducible Ultrathin Ferroelectric Domain Switching for High-Performance Neuromorphic Computing

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 7 vom: 17. Feb., Seite e1905764
1. Verfasser: Li, Jiankun (VerfasserIn)
Weitere Verfasser: Ge, Chen, Du, Jianyu, Wang, Can, Yang, Guozhen, Jin, Kuijuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electronic synapses ferroelectric domain switching ferroelectric tunnel junctions neuromorphic computing ultrathin films
LEADER 01000naa a22002652 4500
001 NLM304514411
003 DE-627
005 20231225115143.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201905764  |2 doi 
028 5 2 |a pubmed24n1015.xml 
035 |a (DE-627)NLM304514411 
035 |a (NLM)31850652 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiankun  |e verfasserin  |4 aut 
245 1 0 |a Reproducible Ultrathin Ferroelectric Domain Switching for High-Performance Neuromorphic Computing 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.02.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Neuromorphic computing consisting of artificial synapses and neural network algorithms provides a promising approach for overcoming the inherent limitations of current computing architecture. Developments in electronic devices that can accurately mimic the synaptic plasticity of biological synapses, have promoted the research boom of neuromorphic computing. It is reported that robust ferroelectric tunnel junctions can be employed to design high-performance electronic synapses. These devices show an excellent memristor function with many reproducible states (≈200) through gradual ferroelectric domain switching. Both short- and long-term plasticity can be emulated by finely tuning the applied pulse parameters in the electronic synapse. The analog conductance switching exhibits high linearity and symmetry with small switching variations. A simulated artificial neural network with supervised learning built from these synaptic devices exhibited high classification accuracy (96.4%) for the Mixed National Institute of Standards and Technology (MNIST) handwritten recognition data set 
650 4 |a Journal Article 
650 4 |a electronic synapses 
650 4 |a ferroelectric domain switching 
650 4 |a ferroelectric tunnel junctions 
650 4 |a neuromorphic computing 
650 4 |a ultrathin films 
700 1 |a Ge, Chen  |e verfasserin  |4 aut 
700 1 |a Du, Jianyu  |e verfasserin  |4 aut 
700 1 |a Wang, Can  |e verfasserin  |4 aut 
700 1 |a Yang, Guozhen  |e verfasserin  |4 aut 
700 1 |a Jin, Kuijuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 7 vom: 17. Feb., Seite e1905764  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:7  |g day:17  |g month:02  |g pages:e1905764 
856 4 0 |u http://dx.doi.org/10.1002/adma.201905764  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 7  |b 17  |c 02  |h e1905764