Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees

© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 2 vom: 04. Feb., Seite 989-1002
1. Verfasser: Swinfield, Tom (VerfasserIn)
Weitere Verfasser: Both, Sabine, Riutta, Terhi, Bongalov, Boris, Elias, Dafydd, Majalap-Lee, Noreen, Ostle, Nicholas, Svátek, Martin, Kvasnica, Jakub, Milodowski, David, Jucker, Tommaso, Ewers, Robert M, Zhang, Yi, Johnson, David, Teh, Yit Arn, Burslem, David F R P, Malhi, Yadvinder, Coomes, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article imaging spectroscopy leaf traits logging nutrient availability phosphorus specific leaf area topography tropical forest
LEADER 01000caa a22002652c 4500
001 NLM304464007
003 DE-627
005 20250226103228.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14903  |2 doi 
028 5 2 |a pubmed25n1014.xml 
035 |a (DE-627)NLM304464007 
035 |a (NLM)31845482 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Swinfield, Tom  |e verfasserin  |4 aut 
245 1 0 |a Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.03.2020 
500 |a Date Revised 10.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging-guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape-level disturbance gradient spanning old-growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old-growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old-growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover 
650 4 |a Journal Article 
650 4 |a imaging spectroscopy 
650 4 |a leaf traits 
650 4 |a logging 
650 4 |a nutrient availability 
650 4 |a phosphorus 
650 4 |a specific leaf area 
650 4 |a topography 
650 4 |a tropical forest 
700 1 |a Both, Sabine  |e verfasserin  |4 aut 
700 1 |a Riutta, Terhi  |e verfasserin  |4 aut 
700 1 |a Bongalov, Boris  |e verfasserin  |4 aut 
700 1 |a Elias, Dafydd  |e verfasserin  |4 aut 
700 1 |a Majalap-Lee, Noreen  |e verfasserin  |4 aut 
700 1 |a Ostle, Nicholas  |e verfasserin  |4 aut 
700 1 |a Svátek, Martin  |e verfasserin  |4 aut 
700 1 |a Kvasnica, Jakub  |e verfasserin  |4 aut 
700 1 |a Milodowski, David  |e verfasserin  |4 aut 
700 1 |a Jucker, Tommaso  |e verfasserin  |4 aut 
700 1 |a Ewers, Robert M  |e verfasserin  |4 aut 
700 1 |a Zhang, Yi  |e verfasserin  |4 aut 
700 1 |a Johnson, David  |e verfasserin  |4 aut 
700 1 |a Teh, Yit Arn  |e verfasserin  |4 aut 
700 1 |a Burslem, David F R P  |e verfasserin  |4 aut 
700 1 |a Malhi, Yadvinder  |e verfasserin  |4 aut 
700 1 |a Coomes, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 2 vom: 04. Feb., Seite 989-1002  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:26  |g year:2020  |g number:2  |g day:04  |g month:02  |g pages:989-1002 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14903  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 2  |b 04  |c 02  |h 989-1002