Parallel Signal Processing of a Wireless Pressure-Sensing Platform Combined with Machine-Learning-Based Cognition, Inspired by the Human Somatosensory System

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 8 vom: 21. Feb., Seite e1906269
1. Verfasser: Lee, Gun-Hee (VerfasserIn)
Weitere Verfasser: Park, Jin-Kwan, Byun, Junyoung, Yang, Jun Chang, Kwon, Se Young, Kim, Chobi, Jang, Chorom, Sim, Joo Yong, Yook, Jong-Gwan, Park, Steve
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article LC passive resonators electronic skin machine learning parallel signal processing pressure sensors Dimethylpolysiloxanes Polymers Pyrroles polypyrrole mehr... 30604-81-0 baysilon 63148-62-9
LEADER 01000naa a22002652 4500
001 NLM304413925
003 DE-627
005 20231225114932.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201906269  |2 doi 
028 5 2 |a pubmed24n1014.xml 
035 |a (DE-627)NLM304413925 
035 |a (NLM)31840337 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Gun-Hee  |e verfasserin  |4 aut 
245 1 0 |a Parallel Signal Processing of a Wireless Pressure-Sensing Platform Combined with Machine-Learning-Based Cognition, Inspired by the Human Somatosensory System 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.11.2020 
500 |a Date Revised 18.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Inspired by the human somatosensory system, pressure applied to multiple pressure sensors is received in parallel and combined into a representative signal pattern, which is subsequently processed using machine learning. The pressure signals are combined using a wireless system, where each sensor is assigned a specific resonant frequency on the reflection coefficient (S11 ) spectrum, and the applied pressure changes the magnitude of the S11 pole with minimal frequency shift. This allows the differentiation and identification of the pressure applied to each sensor. The pressure sensor consists of polypyrrole-coated microstructured poly(dimethylsiloxane) placed on top of electrodes, operating as a capacitive sensor. The high dielectric constant of polypyrrole enables relatively high pressure-sensing performance. The coils are vertically stacked to enable the reader to receive the signals from all of the sensors simultaneously at a single location, analogous to the junction between neighboring primary neurons to a secondary neuron. Here, the stacking order is important to minimize the interference between the coils. Furthermore, convolutional neural network (CNN)-based machine learning is utilized to predict the applied pressure of each sensor from unforeseen S11 spectra. With increasing training, the prediction accuracy improves (with mean squared error of 0.12), analogous to humans' cognitive learning ability 
650 4 |a Journal Article 
650 4 |a LC passive resonators 
650 4 |a electronic skin 
650 4 |a machine learning 
650 4 |a parallel signal processing 
650 4 |a pressure sensors 
650 7 |a Dimethylpolysiloxanes  |2 NLM 
650 7 |a Polymers  |2 NLM 
650 7 |a Pyrroles  |2 NLM 
650 7 |a polypyrrole  |2 NLM 
650 7 |a 30604-81-0  |2 NLM 
650 7 |a baysilon  |2 NLM 
650 7 |a 63148-62-9  |2 NLM 
700 1 |a Park, Jin-Kwan  |e verfasserin  |4 aut 
700 1 |a Byun, Junyoung  |e verfasserin  |4 aut 
700 1 |a Yang, Jun Chang  |e verfasserin  |4 aut 
700 1 |a Kwon, Se Young  |e verfasserin  |4 aut 
700 1 |a Kim, Chobi  |e verfasserin  |4 aut 
700 1 |a Jang, Chorom  |e verfasserin  |4 aut 
700 1 |a Sim, Joo Yong  |e verfasserin  |4 aut 
700 1 |a Yook, Jong-Gwan  |e verfasserin  |4 aut 
700 1 |a Park, Steve  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 8 vom: 21. Feb., Seite e1906269  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:8  |g day:21  |g month:02  |g pages:e1906269 
856 4 0 |u http://dx.doi.org/10.1002/adma.201906269  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 8  |b 21  |c 02  |h e1906269