Microbial carbon limitation : The need for integrating microorganisms into our understanding of ecosystem carbon cycling

© 2019 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 4 vom: 14. Apr., Seite 1953-1961
1. Verfasser: Soong, Jennifer L (VerfasserIn)
Weitere Verfasser: Fuchslueger, Lucia, Marañon-Jimenez, Sara, Torn, Margaret S, Janssens, Ivan A, Penuelas, Josep, Richter, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article carbon decomposition ecosystem limitation microbial carbon limitation nutrients plants soil soil microorganisms stoichiometry
Beschreibung
Zusammenfassung:© 2019 John Wiley & Sons Ltd.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant-centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be 'limited' by nutrients or carbon alone. Here, we outline how models aimed at predicting non-steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant-microbe interactions in coupled carbon and nutrient models
Beschreibung:Date Revised 02.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.14962