Unique diversity and functions of the arsenic-methylating microorganisms from the tailings of Shimen Realgar Mine

Microbial arsenic (As) methylation plays important roles in the As biogeochemical cycle. However, little is known about the diversity and functions of As-methylating microorganisms from the tailings of a Realgar Mine, which is characterized as containing extremely high concentrations of As. To addre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 29(2020), 1 vom: 12. Jan., Seite 86-96
1. Verfasser: Ngegla, Janet Victoria (VerfasserIn)
Weitere Verfasser: Zhou, Xing, Chen, Xiaoming, Zhu, Xianbin, Liu, Ziwei, Feng, Jilong, Zeng, Xian-Chun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article ArsM Arsenic contaminated soils Arsenic methylation Microbially As methylation Shimen Realgar Mine Arsenic N712M78A8G
Beschreibung
Zusammenfassung:Microbial arsenic (As) methylation plays important roles in the As biogeochemical cycle. However, little is known about the diversity and functions of As-methylating microorganisms from the tailings of a Realgar Mine, which is characterized as containing extremely high concentrations of As. To address this issue, we collected five samples (T1-T5) from the tailings of Shimen Realgar Mine. Microcosm assays without addition of exogenous As and carbon indicated that all the five samples possess significant As-methylating activities, producing 0.8-5.7 μg/L DMAsV, and 1.1-10.7 μg/L MMAsV with an exception of T3, from which MMAsV was not detectable after 14.0 days of incubation. In comparison, addition of 20.0 mM lactate to the microcosms significantly enhanced the activities of these samples; the produced DMAsV and MMAsV are 8.0-39.7 μg/L and 5.8-38.3 μg/L, respectively. The biogenic DMAsV shows significant positive correlations with the Fe concentrations and negative correlations with the total nitrogen concentrations in the environment. A total of 63 different arsM genes were identified from the five samples, which code for new or new-type ArsM proteins, suggesting that a unique diversity of As-methylating microbes are present in the environment. The microbial community structures of the samples were significantly shaped by the environmental total organic carbon, total As contents and NO3- contents. These data help to better understand the microorganisms-catalyzed As methylation occurred in the environment with extremely high contents of As
Beschreibung:Date Completed 16.03.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-019-02144-9