Low-Rank Matrix Recovery via Modified Schatten-p Norm Minimization with Convergence Guarantees

In recent years, low-rank matrix recovery problems have attracted much attention in computer vision and machine learning. The corresponding rank minimization problems are both combinational and NP-hard in general, which are mainly solved by both nuclear norm and Schatten-p (0<p<1) norm based o...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 11. Dez.
Auteur principal: Zhang, Hengmin (Auteur)
Autres auteurs: Qian, Jianjun, Zhang, Bob, Yang, Jian, Gong, Chen, Wei, Yang
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM304325945
003 DE-627
005 20250226100450.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2957925  |2 doi 
028 5 2 |a pubmed25n1014.xml 
035 |a (DE-627)NLM304325945 
035 |a (NLM)31831418 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Hengmin  |e verfasserin  |4 aut 
245 1 0 |a Low-Rank Matrix Recovery via Modified Schatten-p Norm Minimization with Convergence Guarantees 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In recent years, low-rank matrix recovery problems have attracted much attention in computer vision and machine learning. The corresponding rank minimization problems are both combinational and NP-hard in general, which are mainly solved by both nuclear norm and Schatten-p (0<p<1) norm based optimization algorithms. However, inspired by weighted nuclear norm and Schatten-p norm as the relaxations of rank function, the main merits of this work firstly provide a modified Schatten-p norm in the affine matrix rank minimization problem, denoted as the modified Schatten-p norm minimization (MSpNM). Secondly, its surrogate function is constructed and the equivalence relationship with the MSpNM is further achieved. Thirdly, the iterative singular value thresholding algorithm (ISVTA) is devised to optimize it, and its accelerated version, i.e., AISVTA, is also obtained to reduce the number of iterations through the well-known Nesterov's acceleration strategy. Most importantly, the convergence guarantees and their relationship with objective function, stationary point and variable sequence generated by the proposed algorithms are established under some specific assumptions, e.g., Kurdyka-Łojasiewicz (KŁ) property. Finally, numerical experiments demonstrate the effectiveness of the proposed algorithms in the matrix completion problem for image inpainting and recommender systems. It should be noted that the accelerated algorithm has a much faster convergence speed and a very close recovery precision when comparing with the proposed non-accelerated one 
650 4 |a Journal Article 
700 1 |a Qian, Jianjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Bob  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Gong, Chen  |e verfasserin  |4 aut 
700 1 |a Wei, Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 11. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2019  |g day:11  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2957925  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 11  |c 12