Learning Regional Attraction for Line Segment Detection

This paper presents regional attraction of line segment maps, and hereby poses the problem of line segment detection (LSD) as a problem of region coloring. Given a line segment map, the proposed regional attraction first establishes the relationship between line segments and regions in the image lat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 6 vom: 15. Juni, Seite 1998-2013
1. Verfasser: Xue, Nan (VerfasserIn)
Weitere Verfasser: Bai, Song, Wang, Fu-Dong, Xia, Gui-Song, Wu, Tianfu, Zhang, Liangpei, Torr, Philip H S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM304325848
003 DE-627
005 20231225114739.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2958642  |2 doi 
028 5 2 |a pubmed24n1014.xml 
035 |a (DE-627)NLM304325848 
035 |a (NLM)31831408 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xue, Nan  |e verfasserin  |4 aut 
245 1 0 |a Learning Regional Attraction for Line Segment Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents regional attraction of line segment maps, and hereby poses the problem of line segment detection (LSD) as a problem of region coloring. Given a line segment map, the proposed regional attraction first establishes the relationship between line segments and regions in the image lattice. Based on this, the line segment map is equivalently transformed to an attraction field map (AFM), which can be remapped to a set of line segments without loss of information. Accordingly, we develop an end-to-end framework to learn attraction field maps for raw input images, followed by a squeeze module to detect line segments. Apart from existing works, the proposed detector properly handles the local ambiguity and does not rely on the accurate identification of edge pixels. Comprehensive experiments on the Wireframe dataset and the YorkUrban dataset demonstrate the superiority of our method. In particular, we achieve an F-measure of 0.831 on the Wireframe dataset, advancing the state-of-the-art performance by 10.3 percent 
650 4 |a Journal Article 
700 1 |a Bai, Song  |e verfasserin  |4 aut 
700 1 |a Wang, Fu-Dong  |e verfasserin  |4 aut 
700 1 |a Xia, Gui-Song  |e verfasserin  |4 aut 
700 1 |a Wu, Tianfu  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangpei  |e verfasserin  |4 aut 
700 1 |a Torr, Philip H S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 6 vom: 15. Juni, Seite 1998-2013  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:6  |g day:15  |g month:06  |g pages:1998-2013 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2958642  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 6  |b 15  |c 06  |h 1998-2013