The Mechanism of Cholesterol Modification of Hedgehog Ligand

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 6 vom: 05. März, Seite 520-527
1. Verfasser: Banavali, Nilesh K (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. RGATS biochemical reaction mechanism cholesteroylation homology modeling molecular dynamics Hedgehog Proteins Ligands Cholesterol 97C5T2UQ7J
LEADER 01000naa a22002652 4500
001 NLM304247774
003 DE-627
005 20231225114601.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26097  |2 doi 
028 5 2 |a pubmed24n1014.xml 
035 |a (DE-627)NLM304247774 
035 |a (NLM)31823413 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Banavali, Nilesh K  |e verfasserin  |4 aut 
245 1 4 |a The Mechanism of Cholesterol Modification of Hedgehog Ligand 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.04.2021 
500 |a Date Revised 30.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Hedgehog (Hh) proteins are important components of signal transduction pathways involved in animal development, and their defects are implicated in carcinogenesis. Their N-terminal domain (HhN) acts as a signaling ligand, and their C-terminal domain (HhC) performs an autocatalytic function of cleaving itself away, while adding a cholesterol moiety to HhN. HhC has two sub-domains: a hedgehog/intein (hint) domain that primarily performs the autocatalytic activity, and a sterol-recognition region (SRR) that binds to cholesterol and properly positions it with respect to HhN. The three-dimensional details of this autocatalytic mechanism remain unknown, as does the structure of the precursor Hh protein. In this study, a complete cholesterol-bound precursor form of the drosophila Hh precursor is modeled using known crystal structures of HhN and the hint domain, and a hypothesized similarity of SRR to an unrelated but similar-sized cholesterol binding protein. The restrained geometries and topology switching (RGATS) strategy is then used to predict atomic-detail pathways for the full autocatalytic reaction starting from the precursor and ending in a cholesterol-linked HhN domain and a cleaved HhC domain. The RGATS explicit solvent simulations indicate the roles of individual HhC residues in facilitating the reaction, which can be confirmed through mutational experiments. These simulations also provide plausible structural models for the N/S acyl transfer intermediate and the product states of this reaction. This study thus provides a good framework for future computational and experimental studies to develop a full structural and dynamic understanding of Hh autoprocessing. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a RGATS 
650 4 |a biochemical reaction mechanism 
650 4 |a cholesteroylation 
650 4 |a homology modeling 
650 4 |a molecular dynamics 
650 7 |a Hedgehog Proteins  |2 NLM 
650 7 |a Ligands  |2 NLM 
650 7 |a Cholesterol  |2 NLM 
650 7 |a 97C5T2UQ7J  |2 NLM 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 6 vom: 05. März, Seite 520-527  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:6  |g day:05  |g month:03  |g pages:520-527 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26097  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 6  |b 05  |c 03  |h 520-527