Real-time Burst Photo Selection Using a Light-Head Adversarial Network

We present an automatic moment capture system that runs in real-time on mobile cameras. The system is designed to run in the viewfinder mode and capture a burst sequence of frames before and after the shutter is pressed. For each frame, the system predicts in real-time a goodness score, based on whi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 03. Dez.
1. Verfasser: Wang, Baoyuan (VerfasserIn)
Weitere Verfasser: Vesdapunt, Noranart, Sinha, Utkarsh, Corporation, Lei Zhang Microsoft
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM30406601X
003 DE-627
005 20240229162429.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2955563  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM30406601X 
035 |a (NLM)31804935 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Baoyuan  |e verfasserin  |4 aut 
245 1 0 |a Real-time Burst Photo Selection Using a Light-Head Adversarial Network 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We present an automatic moment capture system that runs in real-time on mobile cameras. The system is designed to run in the viewfinder mode and capture a burst sequence of frames before and after the shutter is pressed. For each frame, the system predicts in real-time a goodness score, based on which the best moment in the burst can be selected immediately after the shutter is released. We develop a highly efficient deep neural network ranking model, which implicitly learns a latent relative attribute space to capture subtle visual differences within a sequence of burst images. The overall goodness is computed as a linear aggregation of the goodnesses of all the latent attributes. To obtain a compact model which can run on mobile devices in real-time, we have explored and evaluated a wide range of network design choices, taking into account the constraints of model size, computational cost, and accuracy. Extensive studies show that the best frame predicted by our model hit users' top-1 (out of 11 on average) choice for 64.1% cases and top-3 choices for 86.2% cases. Moreover, the model (only 0.47M Bytes) can run in real time on mobile devices, e.g. 13ms on iPhone 7 
650 4 |a Journal Article 
700 1 |a Vesdapunt, Noranart  |e verfasserin  |4 aut 
700 1 |a Sinha, Utkarsh  |e verfasserin  |4 aut 
700 1 |a Corporation, Lei Zhang Microsoft  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 03. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:03  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2955563  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 03  |c 12