An Immersed Interface Method for Discrete Surfaces

Fluid-structure systems occur in a range of scientific and engineering applications. The immersed boundary (IB) method is a widely recognized and effective modeling paradigm for simulating fluid-structure interaction (FSI) in such systems, but a difficulty of the IB formulation of these problems is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 400(2020) vom: 01. Jan.
1. Verfasser: Kolahdouz, Ebrahim M (VerfasserIn)
Weitere Verfasser: Bhalla, Amneet Pal Singh, Craven, Brent A, Griffith, Boyce E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article complex geometries finite element fluid-structure interaction immersed boundary method immersed interface method jump conditions
LEADER 01000naa a22002652 4500
001 NLM304044830
003 DE-627
005 20231225114131.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2019.07.052  |2 doi 
028 5 2 |a pubmed24n1013.xml 
035 |a (DE-627)NLM304044830 
035 |a (NLM)31802781 
035 |a (PII)108854 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kolahdouz, Ebrahim M  |e verfasserin  |4 aut 
245 1 3 |a An Immersed Interface Method for Discrete Surfaces 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fluid-structure systems occur in a range of scientific and engineering applications. The immersed boundary (IB) method is a widely recognized and effective modeling paradigm for simulating fluid-structure interaction (FSI) in such systems, but a difficulty of the IB formulation of these problems is that the pressure and viscous stress are generally discontinuous at fluid-solid interfaces. The conventional IB method regularizes these discontinuities, which typically yields low-order accuracy at these interfaces. The immersed interface method (IIM) is an IB-like approach to FSI that sharply imposes stress jump conditions, enabling higher-order accuracy, but prior applications of the IIM have been largely restricted to numerical methods that rely on smooth representations of the interface geometry. This paper introduces an immersed interface formulation that uses only a C 0 representation of the immersed interface, such as those provided by standard nodal Lagrangian finite element methods. Verification examples for models with prescribed interface motion demonstrate that the method sharply resolves stress discontinuities along immersed boundaries while avoiding the need for analytic information about the interface geometry. Our results also demonstrate that only the lowest-order jump conditions for the pressure and velocity gradient are required to realize global second-order accuracy. Specifically, we demonstrate second-order global convergence rates along with nearly second-order local convergence in the Eulerian velocity field, and between first- and second-order global convergence rates along with approximately first-order local convergence for the Eulerian pressure field. We also demonstrate approximately second-order local convergence in the interfacial displacement and velocity along with first-order local convergence in the fluid traction along the interface. As a demonstration of the method's ability to tackle more complex geometries, the present approach is also used to simulate flow in a patient-averaged anatomical model of the inferior vena cava, which is the large vein that carries deoxygenated blood from the lower extremities back to the heart. Comparisons of the general hemodynamics and wall shear stress obtained by the present IIM and a body-fitted discretization approach show that the present method yields results that are in good agreement with those obtained by the body-fitted approach 
650 4 |a Journal Article 
650 4 |a complex geometries 
650 4 |a finite element 
650 4 |a fluid-structure interaction 
650 4 |a immersed boundary method 
650 4 |a immersed interface method 
650 4 |a jump conditions 
700 1 |a Bhalla, Amneet Pal Singh  |e verfasserin  |4 aut 
700 1 |a Craven, Brent A  |e verfasserin  |4 aut 
700 1 |a Griffith, Boyce E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 400(2020) vom: 01. Jan.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:400  |g year:2020  |g day:01  |g month:01 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2019.07.052  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 400  |j 2020  |b 01  |c 01