Removal of emerging pathogenic bacteria using metal-exchanged natural zeolite bead filter

Hospital wastewaters can become a route for dissemination of antibiotic-resistant bacteria to the environment if not properly treated. Some of these bacteria are able to survive conventional disinfection treatments (e.g. chlorination, UV irradiation), which evokes the need for novel disinfection met...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 80(2019), 6 vom: 30. Sept., Seite 1085-1098
1. Verfasser: Ivankovic, Tomislav (VerfasserIn)
Weitere Verfasser: Dikic, Jelena, du Roscoat, Sabine Rolland, Dekic, Svjetlana, Hrenovic, Jasna, Ganjto, Marin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Anti-Bacterial Agents Zeolites 1318-02-1 Silver 3M4G523W1G
Beschreibung
Zusammenfassung:Hospital wastewaters can become a route for dissemination of antibiotic-resistant bacteria to the environment if not properly treated. Some of these bacteria are able to survive conventional disinfection treatments (e.g. chlorination, UV irradiation), which evokes the need for novel disinfection methods. The metal-exchanged zeolites were tested as novel antibacterial agents for wastewater treatment. The natural zeolite clinoptilolite enriched with silver (AgNZ) showed far better antibacterial activity towards hospital pathogenic bacterium Acinetobacter baumannii when compared with copper-exchanged zeolite (CuNZ), with minimal bactericidal concentration of 0.25-2 (AgNZ) compared with 32-64 mg L-1 (CuNZ) in a batch system and respective log 5.6 reduction compared with log 0.5 reduction in a flow system with pure bacterial culture. In the flow system with real effluent wastewater from the treatment plant, the removal of carbapenem-resistant bacteria using AgNZ was 90-100% during the 4 days of the experimental run. These results indicate that the AgNZ efficiently removes pathogenic bacteria from the wastewater, including A. baumannii, and is promising as a disinfectant material in a bead filter system
Beschreibung:Date Completed 06.12.2019
Date Revised 15.12.2020
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2019.348