Moisture-driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large-scale oscillation patterns across northern treeline in northwest North America

© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 3 vom: 17. März, Seite 1842-1856
1. Verfasser: Lange, Jelena (VerfasserIn)
Weitere Verfasser: Carrer, Marco, Pisaric, Michael F J, Porter, Trevor J, Seo, Jeong-Wook, Trouillier, Mario, Wilmking, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Picea glauca boreal forest climate change divergence drought pacific decadal oscillation plasticity tree-ring width wood anatomy
Beschreibung
Zusammenfassung:© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Tree growth at northern treelines is generally temperature-limited due to cold and short growing seasons. However, temperature-induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree-ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell-wall thickness, cell number) and TRW were correlated with the drought-sensitive standardized precipitation-evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925-1946), cool/wet (1947-1976) and again warm/dry (1977-1998) climate regimes. Xylem anatomical traits revealed water-limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture-driven shift in growth-limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture-driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity
Beschreibung:Date Completed 19.03.2020
Date Revised 19.03.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.14947